JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Issues journals

Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 4. P. 71-80

REVIEW

A.A. Danilenko, S.V. Shakhtarina

Radiation Therapy of Hodgkin’s Lymphoma: From “Radical Program” of Treatment to Modern Technologies

A.F. Tsyb Medical Radiological Research Center, Obninsk, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

First significant achievements in treatment of Hodgkin’s lymphoma patients were obtained due to radiation therapy. Compound chemotherapy introduced later also yielded considerable results. Combined modality of these two methods produced the most effective treatment. Radiation therapy gradually underwent changes as a result of technical innovations and improving concept of optimal treatment volumes and doses. The review presents literature data on the history of radiation therapy for Hodgkin’s lymphoma patients used alone, and in combination with chemotherapy.

Key words: Hodgkin’s lymphoma, radiotherapy, chemo-radiotherapy

REFERENCES

  1. Lukes R.J., Butler J.J. The pathology and nomenclature of Hodgkin’s disease. Cancer Res. 1966. Vol. 26. No. 6. P. 1063-1083.
  2. Kaplan H.S., Rosenberg S.A. The management of the Hodgkin’s disease. Cancer, 1975. Vol. 36. No. 2. P. 796-803.
  3. Glatstein E., Guernsey J.M., Rosenberg S A. et al. The value of laparotomy and splenectomy in the staging of Hodgkin’s disease. Cancer, 1969. Vol. 24. No. 4. P. 709-718.
  4. Carbone P.P., Kplan H.S., Musshoff K. et al. Report of the Committee on Hodgkin’s disease staging classification. Cancer Res. 1971. Vol. 31. No. 11. P. 1860-1961.
  5. Lister T.A., Crowther D., Sutcliffe S.B. et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswold’s meeting. J. Clin. Oncol. 1989. Vol. 7. No. 11. P. 1630-1636.
  6. Meignan M., Gallarnini A., Itti E. et al. Report on the Third International Workshop on Interim Positron Emission Tomography in Lymphoma held in Menton, France, 26-27 September 2011 and Menton 2011 consensus. Leuk. Lymphoma, 2012. Vol. 53. No. 10. P. 1876-1881.
  7. Kaplan H.S. Long-term results of palliative and radical radiotherapy of Hodgkin’s disease. Cancer Res. 1966. Vol. 26. No. 1. P. 1250-1252.
  8. Baisogolov G.D., Khmelevskaya Z.I. Luchevaya terapiya limfogranulematoza po radikal'noi programme (metodicheskie rekomendatsii). Minzdrav SSSR, Akademiya med. nauk SSSR. 1972. 45 p. (In Russ.).
  9. Shakhtarina S.V., Pavlov V.V., Danilenko A.A., Afanasova N.V. Lechenie bol'nykh limfomoi Khodzhkina s lokal'nymi stadiyami I, II, IE, IIE: opyt Meditsinskogo radiologicheskogo nauchnogo tsentra. Klinicheskaya onkogematologiya, 2007. No. 4. P. 36-46. (In Russ.).
  10. Duhmke E., Franklin J., Pfreundschuh M. et al. Lowdose radiation is sufficient for the non involved extended field treatment in vavorable early stage Hodgkin’s disease: long-term results of a randomized trial of radiotherapy alone. J. Clin. Oncol. 2001. Vol. 19. No. 11. P. 2905-2914.
  11. Huguley C.M., Durant J.R., Moores R.R., at al. A comparison of nitrogen mustard, vincristine, procarbasine, and prednisone (MOPP) vs. nitrogen mustard in advanced Hodgkin’s disease. Cancer. 1975. Vol. 36. No. 4. P. 1227-1240.
  12. Canellos G.P., Rosenberg S.A., Friedberg J.W. et al. Treatment of Hodgkin’s lymphoma: A 50-year perspective. J. Clin. Oncol. 2014. Vol. 32. No. 3. P. 163-168.
  13. Bonadonna G., Zucali R., Monfardini S. et al. Combunation chemotherapy of Hodgkin’s diseasewith adriamycin, vinblastine, and imidazole carboxiamide versus MOPP. Cancer. 1975. Vol. 36. No. 1. P. 252-259.
  14. Canellos G.P., Niedzwiecki D., Johnston J.L. Longterm follow up of survival in Hodgkin’s lymphoma. N. Engl. J. Med. 2009. Vol. 361. No. 24. P. 2390-2391.
  15. Hasenclever D., Diehl V. A prognostic score for advanced Hodgkin’s disease: International Prognostic Factors Project on Advanced Hodgkin’s Disease. N. Engl. J. Med. 1998. Vol. 339. No. 21. P. 1506-1514.
  16. Diehl V., Franklin J., Hasenclever D. et al. BEACOPP: a new regimen for advanced Hodgkin’s disease - German Hodgkin’s Lymphoma Study Group. Ann. Oncol. 1998. Vol. 9. Suppl. 5. P. 67-71.
  17. Horning S.G., Hoppe R.T., Breslin S. et al. Stanford V and radiotherapy for locally extensive and advanced Hodgkin’s disease: mature results of a prospective clinical trial. J. Clin. Oncol. 2002. Vol. 20. No. 3. P. 630-637.
  18. Kelly K.M., Sposto R., Hutchinson R. et al. BEACOPP chemotherapy is a highly effective regimen in children and adolescents with high-risk Hodgkin lymphoma: a report from the Children’s Oncology Group. Blood. 2011. Vol. 117. No. 9. P. 2596-2603.
  19. Fuller L.M., Hagemeister F.B., North L.B. et al. The adjuvant role of two cycles of MOPP and low-dose lung irradiation in stage I through IIB Hodgkin’s disease: preliminary results. Int. J. Radiat. Biol. Phys. 1988. Vol. 14. No. 4. P. 683-692.
  20. Longo D.L., Glatstein E., Duffey P.L. et al. Radiation therapy versus combination chemotherapy in the treatment of early-stage Hodgkin’s disease: seven-year results of a prospective randomized trial. J. Clin. Oncol. 1991. Vol. 9. No. 6. P. 906-917.
  21. Shakhtarina S.V. Luchevoe, polikhimio-luchevoe, lekarstvennoe lechenie pervichnykh form limfogranulematoza I-IV stadii. Obninsk. Diss. dokt. med. nauk. 1995. 413 p. (In Russ.).
  22. Lister T.A. Treatment of stage IIIa Hodgkin’s disease: Long follow-up perspective. J. Clin. Oncol. 2008. Vol. 26. No. 2. P. 5144-5146.
  23. Shakhtarina S.V. Kombinirovannoe (luchevoe i lekarstvennoe) lechenie bol'nykh limfogranulematozom I-II stadii. Obninsk, diss. kand. med. nauk. 1985. 175 p. (In Russ.).
  24. Straus D.J., Portlock C.S., Qin G. et al. Results of a prospective randomized clinical trial of doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) followed by r5adiation therapy (RT) versus ABVD alone for stages I, II and IIIA nonbulky Hodgkin’s disease. Blood. 2004. Vol. 104. No. 12. P. 3483-3489.
  25. Campbell B.A., Hornby C., Cunninghame J. et al. Minimising critical organ irradiation in limited stage Hodgkin’s lymphoma: A dosimetric study of the benefit of involved node radiotherapy. Ann. Oncol. 2012. Vol. 23. No. 5. P. 1259-1266.
  26. Isaev I.G. Luchevaya terapiya v kombinirovannom lechenii bol'nykh limfogranulematozom IIIB-IV stadii. Obninsk. Diss. kand. med. nauk. 1981. 182 p. (In Russ.).
  27. Zittoun R., Audebert A., Hoerni B. et al. Extended versus involved fields irradiation combined with MOPP chemotherapy in early clinical stages of Hodgkin’s disease. J. Clin. Oncol. 1985. Vol. 3. No. 2. P. 207-214.
  28. Datsenko P.V. Metodika luchevoi terapii s poetapnym zonal'nym sokrashcheniem polei. V kn.: «Limfoma Khodzhkina». OOO «TID «Russkoe slovo-RS». 2009. P. 145-148. (In Russ.).
  29. Shakhtarina S.V., Pavlov V.V., Danilenko A.A., Lashkova O.E. Treatment of Hodgkin’s disease patients with radio-chemotherapy using reduced (20-30 Gy) total tumor doses. Abstracts for the 6th Symp. On Hodgkin’s lymphoma. Cologne, Germany. 18-21 Sept. 2004. Haematol. 2004. Vol. 73. Suppl. 65. P. 39-40.
  30. Shakhtarina S.V., Danilenko A.A., Pavlov V.V., Dvinskikh N.Yu. Kombinirovannoe lechenie pervichnykh bol'nykh limfomoi Khodzhkina I-II stadii s primeneniem luchevoi terapii v umen'shennykh summarnykh ochagovykh dozakh (20-30 Gr) i khimioterapii po skhemam SORR, ABVD, BEACOPP-21. Mat-ly nauchno-prakt. konf. «Aktual'nye voprosy diagnostiki i lecheniya limfomy Khodzhkina (po rezul'tatam lechebnykh programm 1998-2008 g.)». 15-17 Apr. 2010. Obninsk. 64 p. (In Russ.).
  31. Minimal'nye klinicheskie rekomendatsii Evropeiskogo obshchestva meditsinskoi onkologii (ESMO). Moscow, publ. gruppa RONTs im. N.N. Blokhina RAMN. 2010. 433 p. (In Russ.).
  32. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. Under the guidance of I.V. Poddubnoi, V.G. Savchenko. Moscow: Media Medika, 2013. 102 p. (In Russ.).
  33. Meyer R.M., Gospodarovicz M.K., Connors J.M. et al. ABVD alone versus radiation-based therapy in limitedstage Hodgkin’s lymphoma. N. Engl. J. Med. 2012. Vol. 366. No. 5. P. 399-408.
  34. Bonadonna G., Bonfante V., Viviani S. et al. ABVD plus subtotal nodal versus involved-field radiotherapy in early-stage Hodgkin’s disease: long-term results. J. Clin. Oncol. 2004. Vol. 22. No. 14. P. 2835-2841.
  35. Ferme C., Eghbali H., Meerw3aldt J.H. et al. Chemotherapy plus involved-field radiation in early-stage Hodgkin’s disease. N. Engl. J. Med. 2007. Vol. 357. No. 19. P. 1916-1927.
  36. Franklin J., Pluetshow A., Paus M.D. et al. Second malignancy risk associated with treatment for Hodgkin’s lymphoma: meta-analysis of the randomized trials. Ann. Oncol. 2006. Vol. 17. No. 12. P. 1749-1760.
  37. Engert A., Plutschow A., Eich H.T. et al. Reduced treatment intensity in patients with early stage Hodgkin’s lymphoma. N. Engl. J. Med. 2010. Vol. 363. No. 7. P. 640-652.
  38. Eich H.T., Diehl V., Gorgen H. et al. Intensified chemotherapy and dose-reduced involved field radiotherapy in patients with early unfavorable Hodgkin’s lymphoma: final analysis of the German Hodgkin Study Group HD11 trial. J. Clin. Oncol. 2010. Vol. 28. No. 27. P. 4199-4206.
  39. Gallamini A., Hutchings M., Rigacci L. et al. Early interim 2- [18F] fluoro-2-depxy-D-glucose positron emission tomography is prognostically superior to International Prognostic Score in advanced-stage Hodgkin’s lymphoma: A report from a joint Italian-Danish study. J. Clin. Oncol. 2007. Vol. 25. No. 24. P. 3746-3752.
  40. Press O.W., LeBlanc M., Rimsza H. et al. Front-line treatment of Hodgkin’s lymphoma - A phase II trial of responce-adapted therapy of Stage III-IV Hodgkin’s lymphoma using early interim FDG-PET imaging: US Intergroup S0816. Hematol. Oncol. 2013. Suppl. 1. Abstr. 124.
  41. Girinsky T., van der Maazen R., Specht L. et al. Involve-node radiotherapy (INRT) in patients with early Hodgkin’s lymphoma: concepts and guidelines. Radiother. Oncol. 2006. Vol. 79. No. 3. P. 270-277.
  42. Raemaekers J.M., Andre M.P., Federico M. et al. Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin’s lymphoma is associated with an increased risk of early relapse: Clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J. Clin. Oncol. 2014. Vol. 32. No. 12. P. 1188-1194.
  43. Available from: http://en.ghsg.org/active-trials/articles/hd16-study.
  44. Radford J., Barrington S., Counsell N. et al. Involved field radiotherapy versus no further treatment in patients with clinical stages IA and IIA Hodgkin’s lymphoma and a “negative” PET scan after 3 cycles ABVD: Results of the UK NCRI RAPID Trial. Blood. 2012. Vol. 120. Abstr. 547.
  45. Filippi A.R., Boticella A., Bello M. et al. Interim positron emission tomography and clinical outcome in patients with early stage Hodgkin’s lymphoma treated with combined modality therapy. Leuk. Lymph. 2013. Vol. 54. No. 6. P. 1183-1187.
  46. Gallamini A., Barrington S.F., Biggi A. et al. The predictive role of interim positron emission tomography for Hodgkin’s lymphoma treatment outcome in confirmed using the interpretation criteria of the Deauville fivepoint scale. Haematol. 2014. Vol. 99. No. 6. P. 1107-1113.
  47. Jahalom J., Mauch P. The involved field is back: issues in delineating the radiation field in Hodgkin’s disease. Ann. Oncol. 2002. Vol. 13. Suppl. 1. P. 79-83.
  48. Maraldo M.V., Brodin P., Aznar M.C. et al. Estimated risc of cardiovascular disease and secondari cancers with modern highly conformal radiotherapy for early stage mediastinal Hodgkin’s lymphoma. Ann. Oncol. 2013. Vol. 24. No. 8. P. 2113-2118.
  49. Ricardi U., Filippi A.R., Piva C., Franco P. The evolving role of radiotherapy in early stage Hodgkin’s lymphoma. Mediter. Hematol. Infect. 2014. Vol. 6. No. 1. DOI: 10.4084/MJHID.2014.035.
  50. Campbell B.A., Hornby C., Cunninghame J. Minimising critical organ irradiation in limited stage Hodgkin’s lymphoma: A dosimetric study of the benefit of involved node radiotherapy. Ann. Oncol. 2012. Vol. 23. No. 50. P. 1259-1266.
  51. De Bruin M.L., Sparidans J., van’t Veer M.B. et al. Breast cancer risk in female survivors of Hodgkin’s lymphoma: lower risk after smaller radiation volumes. J. Clin. Oncol. 2009. Vol. 27. No. 26. P. 4239-4246.
  52. Maraldo M.V., Aznar M.C., Vogelius I.R. et al. Involved node radiation therapy: an effective alternative in earlystage Hodgkin’s lymphoma. Int. J. Radiat. Oncol. Biol. Phys. 2013. Vol. 85. No. 4. P. 1057-1065.
  53. Engert A., Horning S.J. Hodgkin Lymphoma: a Comprehensive Update on Diagnostics and Clinics. Berlin - Heidelberg. 2011. 381 p.
  54. Younes A., Gopal A.K., Smith S.E. et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J. Clin. Oncol. 2012. Vol. 30. No. 18. P. 2183-2189.
  55. Deluca P., Jones D., Gahbauer R. et al. Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT [report 83]. JICRU. 2010. Vol. 10. No. 1. P. 1-106.
  56. Specht L., Yahalom J., Illidge T. et al. ILROG. Modern radiation therapy for Hodgkin’s lymphoma: Field and dose guidelines from the International lymphoma radiation oncology group (ILROG). Int. J. Radiat. Biol. Phys. 2014. Vol. 89. No. 4. P. 854-862.
  57. Goda J.S., Massey C., Kuruvilla J. et al. Role of salvage radiation therapy for patients with relapsed or refractory Hodgkin lymphoma who failed autologous stem cell transplant. Int. J. Radiat. Biol. Phys. 2012. Vol. 84. No. 3. P. 329-335.

For citation: Osovets S.V. Revisiting the Theory of Radiation Injury and Recovery. Medical Radiology and Radiation Safety. 2015;60(4):71-80. Russian.

PDF (RUS) Full-text article (in Russian)

Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 4. P. 62-70

RADIATI ON THERAPY

N.K. Voznesensky1, N.V. Bogdanov1, S.L. Dorohovich2, Yu.G. Zabaryansky3, Yu.A. Kurachenko3, Eu.S. Matusevich1, V.A. Levchenko2, Yu.S. Mardynsky4, N.N. Voznesenskaya5

The Modeling of Temperat ure Fields in Vertebra Bone at Stabilizing Vertebroplasty

1. Institute of Nuclear Power Engineering in National Research Nuclear University MEPhI, Obninsk, Russia; 2. Experimental research and methodological center “Simulation Systems Ltd”, Obninsk, Russia; 3. A.I. Leypunsky Institute for Physics and Power Engineering named after, Obninsk, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 4. A.F. Tsyb, Medical Radiological Research Centre, Obninsk, Russia; 5. City Clinical Hospital of FMBA, Obninsk, Russia

ABSTRACT

Purpose: To study the temperature fields caused by bone cement polymerization at the stabilizing vertebroplasty. To verify experimental data by thermohydraulic simulation. To modify program codes, applied in nuclear installations in order to adapt them to new object region.

Material and methods: Two groups of experiments involving the non-stationary temperature distribution measurements were done, namely, the cement polymerization: a) in the isolated cuvette; b) in a vertebra. For numerical modeling of experiments, the 3D nonstationary KANAL code applied in thermohydraulics of nuclear power plants is adapted.

Results: The satisfactory coherence of measured data and simulated ones is obtained for temperature distributions, the spatial and time-dependent as well. The most important is the closeness in experimental and simulating temperature maximum values at cement polymerization in a vertebra. The executed study grants the theoretical support of vertebroplasty in two aspects: a) by providing with the developed calculation techniques; b) by estimating the curative effect because of the bone tissue heating.

Key words: spinal metastases, vertebroplasty, temperature fields, experimental and simulating modeling, numerical simulation, curative effect

REFERENCES

  1. Galibert P., Deramond H., Rosat P., Le Gars D. Note préliminaire sur le traitement des angiomes vertébraux par vertébroplastie acrylique percutanée. Neuro chirurgie. 1987. Vol. 33. P. 166-168.
  2. Deramond H., Depriester C., Galibert P., Le Gars D. Percutaneous vertebroplasty with polymethyl methacrylate. Technique, indicatios, and results. Radiol. Clin. North Amer. 1998. Vol. 36. P. 533-546.
  3. Kaemmerlen P., Thiesse P., Jonas P. et al. Percutaneous injection of orthopaedic cement in metastatic vertebral lesions. N. Engl. J. Med. 1989. Vol. 321. No. 2. P. 121-132.
  4. Aliev M., Dolgushin B., Teplyakov V., Valiev A. Transcutaneous vertebroplasty in combined treatment of patients with tumoral lesions of the spine. EMSOS. 2003. Abs. A-044. 72 p.
  5. Aliev M., Teplyakov V., Karpenko V., Valiev A. Vertebroplasty as a choice of treatment of painful syndrome in patients with tumoral lesions of the spine. EMSOS. 2004. Abs. 28. 5 p.
  6. Cortet ., Cotton B., Boutry N. et al. Percutaneous vertebroplasty in patients with osteolytic metastases or multiple myeloma. Rev. Rheum. Ed. 1997. Vol. 64. No. 3. P. 177-183.
  7. Valiev M.A., Musaev E.R., Teplyakov V.V. et al. Chreskozhnaya vertebroplastika v onkologii. In M.D. Alieva, B.I. Dolgushina (eds.). Moscow, INFRA-M. 2010, 71 p. (In Russ.).
  8. Aliev M.D., Sokolovskii V.A. Vysokotekhnologichnoe lechenie v onkoortopedii. Moscow. 2008, 24 p. (In Russ.).
  9. Ptashnikov D.A., Usikov V.D., Korytova L.I. et al. Pathological fractures of spine caused by tumor: diagnostics and treatment tactic. In: “First International Scientific Distance Congress on Spine and Spinal Cord Surgery “InterSpine - 2004”, St. Petersburg, Russia, September. 2004. P. 36-38.
  10. Kustov A.V., Zharinov G.M., Rud' S.D. et al. Izuchenie effektivnosti punktsionnoi vertebroplastiki i luchevoi terapii v lechenii agressivnykh gemangiom pozvonochnika. Med. akad. zhurnal. 2008. No. 4. P. 101-114. (In Russ.).
  11. Dzhindzhikhadze R.S., Lazarev V.A., Gorozhanin A.V. et al. Perkutannaya vertebroplastika. Neirokhirurgiya. 2005. No. 1. P. 36-41. (In Russ.).
  12. Diamond T.H., Champion B., Clark W.A. Management of acute osteoporotic vertebral fractures: a nonrandomized trial comparing percutaneous vertebroplasty with conservative therapy. Amer. J. Med. 2003. Vol. 114. No. 4. P. 257-265.
  13. Perez-Higueras A., Alvarez L., Rossi R.E. et al. Percutaneous vertebroplasty: long term clinical and radiological outcome. Neuroradiology. 2002. Vol. 44. No. 11. P. 950-954.
  14. Martin J.B., Wetzel S.G., Seium Y. et al. Percutaneous vertebroplasty in metastatic disease: transpedicular access and treatment of lysed pedicles-initial experience. Radiology. 2003. Vol. 229. No. 2. P. 593-597.
  15. Stricker K., Orler R., Yen K. et al. Severe hypercapnia due to pulmonary embolism of polymethyl methacrylate during vertebroplasty. Anesth. Analg. 2004. Vol. 98. No. 4. P. 1184-1186.
  16. Choe Du H., Marom E.M., Ahrar K. et al. Pulmonary embolism of polymethyl methacrylate during percutaneous vertebroplasty and kyphoplasty. AJR Amer. J. Roentgenol. 2004. Vol. 183. No. 4. P. 1097-1102.
  17. Yoo K.Y., Jeong S.W., Yoon W., Lee J. Acute respiratory distress syndrome associated with pulmonary cement embolism following percutaneous vertebroplasty with polymethyl methacrylate. Spine. 2004. Vol. 29. No. 14. P. 294-297.
  18. Nussbaum D.A., Gailloud P., Murphy K. A review of complications associated with vertebroplasty and kyphoplasty as reported to the Food and Drug Administration medical device related web site. J. Vasc. Interv. Radiol. 2004. Vol. 15. No. 11. P. 1185-1192. (In Russ.).
  19. Cortet ., Cotton B., Boutry N. et al. Percutaneous vertebroplasty in patients with osteolytic metastases or multiple myeloma. Rev. Rheum. Ed. 1997. Vol. 64. No. 3. P. 177-183.
  20. Manukovskii V.A. Vertebroplastika v lechenii patologii pozvonochnika (kliniko-eksperimental'noe issledovanie). Saint Petersburg: Avtoreferat diss. dokt. med. nauk. 2009. 45 p.
  21. Tomita K., Kawahara N., Kobayashi T. et al. Surgical strategy for spinal metastases. Spine. 2001. Vol. 26. No. 3. P. 298-330.
  22. Kaneko S., Sehgal V., Skinner H.B. et al. Radioactive bone cement for the treatment of spinal metastases: a dosimetric analysis of simulated clinical scenarious. Phys. Med. Biol. 2012. Vol. 57. P. 4387-4401.
  23. San Millan R.D., Burkhardt K., Jean B. et al. Pathology findings with acrylic implants. Bone. 1999. Vol. 25. No. 2. P. 85-90.
  24. Wetzel S.G., Martin J.B., Somon T. et al. Painful osteolytic metastasis of the atlas: treatment with percutaneous vertebroplasty. Spine. 2002. Vol. 27. No. 22. P. 493-495.
  25. Deramond H., Wright N.T., Belkoff S.M. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone. 1999. Vol. 25. No. 2. P. 17-21.
  26. Belkoff S.M., Molloy S. Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty. Spine. 2003. Vol. 28. No. 14. P. 1555-1559.
  27. Verlaan J.J., Oner F.C., Verbout A.J. et al. Temperature elevation after vertebroplasty with polymethylmethacrylate in the goat spine. J. Biomed. Mater. Res. B: Appl. Biomater. 2003. Vol. 67. No. 1. P. 581-585.
  28. Anselmetti G., Manca A., Kanika Kh. et al. Temperature measurement during polymerization of bone cement in percutaneous vertebroplasty: An in vivo study in humans. Cardiovasc. Intervent. Radiol. 2009. Vol. 32. P. 491-498.
  29. Fradkin S.Z. Sovremennoe sostoyanie gipertermicheskoi onkologii i tendentsii ee razvitiya. Med. novosti. 2004. No. 3. P. 3-8. (In Russ.).
  30. Li C., Chien S., Branemark P.I. Heat shock-induced necrosis and apoptosis in osteoblasts. J. Orthop. Res. 1999. Vol. 17. No. 6. P. 891-899.
  31. Eriksson R.A., Albrektsson T., Magnusson B. Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit. Scand. Plast. Reconstr. Surg. 1984. Vol. 18. No. 3. P. 261-268.
  32. Aleksandrov N.N., Savchenko N.E., Fradkin S.Z. et al. Primenenie gipertermii i giperglikemii pri lechenii zlokachestvennykh opukholei. Moscow: Meditsina. 1980. 256 p. (In Russ.).
  33. Li S., Kotha S., Huang C.H. et al. Finite element thermal analysis of bone cement for joint replacements. J. Biomech. Eng. 2003. Vol. 125. No. 3. P. 315-322.
  34. Po-Liang Lai, Ching-Lung Tai, Lih-Huei Chen. et al. Cement leakage causes potential thermal injury in vertebroplasty. Available from: http://www.biomedcentral.com/1471-2474/12/116.
  35. Modul' ATsP/TsAP ZET 210. Available from: http://www.zetlab.ru/catalog/ACP/ZET_210/. (In Russ.).
  36. CementoFixx-R Hauptmerkmale Opti Med. Global Care. Instructions for use surgical cement for vertebroplasty sterile, radiopaque. 2004. 120 p. Available from: http://www.opti-med.de/uploads/tx_vaproducts/CementoFixx-R-M-L_03-2013.pdf.
  37. Teplogidravlicheskii kod. Opisanie chislennoi skhemy koda KANAL. Otchet o NIR. Vol. 7. Obninsk. ENIMTs MS. 2008. 95 p. (In Russ.).
  38. Voznesenskii N.K., Bogdanov N.V., Dorokhovich S.L. et al. Modelirovanie gipertermii pri stabiliziruyushchei vertebroplastike. Yadernaya energetika. 2013. No. 1. P. 37-48. (In Russ.).
  39. Overgaard J. The current and potential role of hyperthermia in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1989. Vol. 16. P. 535-549.

For citation: Voznesensky NK, Bogdanov NV, Dorohovich SL, Zabaryansky YuG, Kurachenko YuA, Matusevich EuS, Levchenko VA, Mardynsky YuS, Voznesenskaya NN. The Modeling of Temperature Fields in Vertebra Bone at Stabilizing Vertebroplasty. Medical Radiology and Radiation Safety. 2015;60(4):62-70. Russian.

PDF (RUS) Full-text article (in Russian)

Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 4. P. 36-42

RADIATION SAFETY

A.L. Polyudin, R.I. Yusupov

Investigation of Radioactive Gas-Dynamic Factors in the Trials of Russian Federal Nuclear Center VNIIEF

E.I. Zababakhin Russian Federal Nuclear Center - Russia Research Institute of Technical Physics, Snezhinsk, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

Purpose: The study of the redistribution of uranium during the one-time decentralized emissions.

Material and methods: Were sampled aerosol aspiration and sedimentation processes. Selected soil at a distance of 250 m from the emission points and laid soil profiles, taking into account the elementary geochemical landscapes. In a sample of uranium samples were determined standard spectrophotometric method using tributyl phosphate and arsenazo III.

Result: The average uranium content in the air since the protective buildings decentralized single peak changes from 0.40 to 1.56 Bq/m3. The estimated dose was in the range of from 2,11×10-6 to 5,91×10-5 mSv. Investigation showed fractional aerosol distribution of particles up to 2 mm is not more than 46 %. The uranium content in the five-centimeter top layer of soil is in the range of from 32 to 151 mg/kg. The content of uranium in soil profiles pledged not exceed 360 mg/kg.

Conclusion: 1. The average uranium content in the air since the protective buildings experiment varies from 0.40 to 1.84 Bq/m3. The average uranium content in the air pilot fields varies from 0.15 to 1.77 Bq/m3. The estimated dose is not more than 5,91×10-5 mSv. Up to half of aerosols deposited at a distance of 10 km from the point of a single decentralized output. Fraction of particles that determine the primary effects of exposure (ie up to 2 microns) reaches 45.7 %. 2. The uranium content in the studied soils from 6 to 15 times greater than the maximum recorded natural uranium content. Maximum rates of uranium in soils experimental field associated with the presence of peat horizons, as well as high rates of soil density. Proportion of watersoluble forms of uranium reaches 1 %, and the mobile — 91 %. 3. Uranium in the upper soil horizons superaqual and subaqueous position is concentrated in the most mobile form (exchange or mobile) associated with the salts of sodium, potassium, calcium and soluble carbonates. In soils superaqual position uranium increasingly. In soils of eluvial position associated with uranium sesquioxide. Up to 95 % of the uranium in the future is likely to be redistributed into the underlying soil horizon.

Key words: long-lived radionuclides, uranium, forms of occurrence, soil emissions

REFERENCES

  1. Polyudin A.L., Faizrakhmanov F.F. Issledovanie kontsentratsii radionuklidov v vozdushnoi srede opytnykh polei pri gazodinamicheskikh issledovaniyakh. V sb.: «Promyshlennaya bezopasnost' i ekologiya». Sarov. 2010. P. 3-8. (In Russ.).
  2. Malashenko A.V. Mnogofaktornyi genezis professionalnoi legochnoi patologii u gornorabochikh uranovykh shakht. Medical Radiology and Radiation Safety. 2009. Vol. 54. No. 2. P. 5-12. (In Russ.).
  3. Malashenko A.V. Rak legkogo u shakhterov uranovykh rudnikov osadochnogo mestorozhdeniya. Medical Radiology and Radiation Safety. 2007. Vol. 52. No. 6. P. 10-12. (In Russ.).
  4. Mordashaeva V.V. Dlitel'nost' postupleniya urana i ego raspredeleniya v organakh i tkanyakh cheloveka. ˥dical Radiology and Radiation Safety. 2004. Vol. 49. No. 2. P. 5-12. (In Russ.).
  5. Kozachenko V.P. Obosnovanie priemov ratsional'nogo ispol'zovaniya, obrabotki i melioratsii zemel' sel'skokhozyaistvennogo naznacheniya Chelyabinskoi oblasti. Chelyabinsk: ChelGU. 1999. 134 p. (In Russ.).
  6. Marei N.A., Zykova A.S. Metodicheskie rekomendatsii po sanitarnomu kontrolyu za soderzhaniem radioaktivnykh veshchestv v ob"ektakh vneshnei sredy. Moscow: Vtoraya tipografiya. 1980. 336 p. (In Russ.).
  7. Spurnyi K., Iekh Ch., Sedlachek B. Aerozoli. Moscow: Atomizdat. 1964. 359 p. (In Russ.).
  8. Fuks N.A. Mekhanika aerozolei. Moscow: Akademii nauk SSSR. 1955. 340 p. (In Russ.).
  9. Bezuglaya E.Yu. Klimaticheskie kharakteristiki uslovii rasprostraneniya primesei v atmosfere. Saint Petersburg: Gidrometeoizdat. 1983. 328 p. (In Russ.).
  10. Byzova N.L. Tipovye kharakteristiki nizhnego 300-metrovogo sloya atmosfery po izmereniyam na vysotnoi machte. Moscow: Moskovskoe otdelenie gidrometeoizdata. 1982. 69 p. (In Russ.).
  11. Vinogradov A.P. Osnovnye cherty geokhimii urana. Moscow: AN SSSR. 1963. 352 p. (In Russ.).
  12. Vinogradov A.P. Geokhimiya redkikh i rasseyannykh khimicheskikh elementov v pochvakh. Moscow: AN SSSR. 1957. 238 p. (In Russ.).
  13. Gus'kova V.N. Uran. Radiatsionno-gigienicheskaya kharakteristika. Moscow: Atomizdat. 1972. 215 p. (In Russ.).
  14. Istochniki, effekty i opasnost ioniziruyushchei radiatsii. Doklad nauchnogo komiteta OON po deistviyu atomnoi radiatsii General noi assamblee za 1988 g. NKDAR OON. Moscow: Mir. 1993. 728 p. (In Russ.).
  15. Predely postupleniya radionuklidov dlya rabotayushchikh s radioaktivnymi veshchestvami v otkrytom vide. Publikatsiya 30 MKRZ. Ch. 3. Moscow: Energoatomizdat. 1984. 540 p. (In Russ.).
  16. Shein E.V., Goncharov V.M. Agrofizika. Rostov na Donu, Feniks, 2006, 400 p. (In Russ.).
  17. Smirnova E.A. Vyshchelachivanie radionuklidov iz pochvy i chastits radionuklidnykh vypadenii 30-kilometrovoi zony ChNPP. Trudy Radievogo in-ta im. V.G. Khlopina. 2009. Vol. XIV. P. 311-317. (In Russ.).
  18. Ladonin D.V. Soedineniya tyazhelykh metallov v pochvakh - problemy i metody izucheniya. Pochvovedenie. 2002. No. 6. P. 682-692. (In Russ.).
  19. Protasov N.A. Geokhimiya prirodnykh landshaftov. Voronezh: Poligraficheskii tsentr Voronezhskogo gos. un-ta. 2008. 36 p. (In Russ.).
  20. Uralbekov B.M., Satybaldiev B.S., Nazarkulova Sh.N. Uran i radii v mineral'nykh sostavlyayushchikh pochv mestorozhdeniya Kurdai. V sb.: «Materialy mezhdunarodnoi konferentsii po analiticheskoi khimii i ekologii». Almaty: KazNU. 2010. P. 86-93. (In Russ.).
  21. Tessier A. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analitical Chemistry. 1979. Vol. 51. P. 844-851.

For citation: Polyudin AL, Yusupov RI. Investigation of Radioactive Gas-Dynamic Factors in the Trials of Russian Federal Nuclear Center VNIIEF. Medical Radiology and Radiation Safety. 2015;60(4):36-42. Russian.

PDF (RUS) Full-text article (in Russian)

Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 4. P. 43-61

RADIATION SAFETY

T.V. Azizova1, R. Haylock2, M.B. Moseeva1, M.V. Pikulina1, E.S. Grigorieva1

Cerebrovascular Diseases Incidence and Mortality in an Extended Mayak Worker Cohort: 1948-1982

1. Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk region, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. UK Health Ministry, Chilton, UK

ABSTRACT

Purpose: To analyze risks of incidence and mortality from cerebrovascular diseases (CeVD) (430-438 ICD-9 codes) in a cohort of workers first employed at the Mayak Production Association (Mayak PA) in 1948-1982 and followed up to the end of 2008 (22,377 individuals).

Material and methods: Workers of the study cohort were exposed occupationally to prolonged external gamma and internal alpha radiation. The mean (± standard deviation) total dose from external gamma-radiation was 0.54 ± 0.76 Gy for males and 0.44 ± 0.65 Gy for females. 8,717 CeVD incidences during 425,735 person-years of the follow-up and 1,578 deaths from CeVD during 836,078 person-years of the follow-up have been registered by its end.

Results: The analysis revealed the association of incidence and mortality from CeVD in the cohort of Mayak PA workers with such non-radiation factors as gender, attained age, smoking, alcohol consumption, hypertension, obesity, etc. Significant upward trends with total absorbed dose from external gamma radiation and with total absorbed dose from internal alpha radiation were found for CeVD incidence after adjustment for non-radiation factors (gender, age, calendar period, period of first employment, facility type, smoking and alcohol consumption); excess relative risks per unit dose (ERR/Gy) based on linear model were 0.46 (95 % confidence intervals CI 0.37-0.57) and 0.28 (95 % CI 0.16-0.42), respectively. Additional adjustments (for hypertension, body mass index, duration of employment, smoking index and total absorbed dose from internal alpha radiation while analyzing the association with external dose and vice versa) had a marginal effect on the obtained results. It is the first time when a significant onward trend with dose from internal radiation was found for CeVD mortality among a sub-cohort of workers exposed to alpha radiation at total absorbed liver dose below 1.0 Gy adjusted for non-radiation factors with ERR/Gy 0.84 (95 % CI 0.09-1.92).

Conclusions: The study established the statistically significant association of CeVD incidence risk with external gamma and internal alpha radiation.

Key words: cerebrovascular disease, incidence, mortality, gammaradiation, alpha-radiation, Mayak PA, occupational exposure

REFERENCES

  1. Azizova T.V., Muirhead C.R., Druzhinina M.B. et al. Cerebrovascular diseases in the cohort of workers first employed at Mayak PA in 1948-1958. Radiat. Res. 2010a. Vol. 174. P. 851-864.
  2. Azizova T.V., Muirhead C.R., Druzhinina M.B. et al. Cardiovascular Diseases in the Cohort of Workers First Employed at Mayak PA in 1948-1958. Radiat. Res. 2010b. Vol. 174. P. 155-168.
  3. Azizova T.V., Muirhead C.R., Moseeva M.B. et al. Cerebrovascular diseases in nuclear workers first employed at the Mayak PA in 1948-1972. Rad. Environ. Biophys. 2011. Vol. 50. No. 4. P. 539-552.
  4. Azizova T.V., Muirhead C.R., Moseeva M.B. et al. Ischemic heart disease in nuclear workers first employed at the Mayak PA in 1948-1972. Health Phys. 2012. Vol. 103. No. 1. P. 3-14.
  5. Azizova T.V., Zhuntova G.V., Haylock R.G.E. et al. Chronic bronchitis in the cohort of Mayak workers first employed 1948-1958. Radiat. Res. 2013. Vol. 180. No. 6. P. 610-621.
  6. Moseeva M.B., Azizova T.V., Grigorieva E.S., Haylock R. Risk of circulatory diseases among Mayak PA workers with radiation doses estimated using the improved Mayak Workers Dosimetry System 2008. Rad. Environ. Biophys. 2014. Vol. 53. No. 2. P. 469-477.
  7. Simonetto C., Azizova T.V., Grigoryeva E.S. et al. Ischemic heart disease in workers at Mayak PA: Latency of incidence risk after radiation exposure. PLoS ONE. 2014. Vol. 9. No. 5. P. e96309. DOI: 10.1371/journal. phone.0096309.
  8. Khokhryakov V.V., Khokhryakov V.F., Suslova K.G. et al. Mayak Worker Dosimetry System 2008 (MWDS-2008): Assessment of internal alpha-dose from measurement results of plutonium activity in urine. Health Phys. 2013. Vol. 104. No. 4. P. 366-378.
  9. Vasilenko E.K., Scherpelz R.I., Gorelov M.V. et al. External dosimetry reconstruction for Mayak workers. AAHP special session health physics society annual meeting. Available from: http://www.hps1.org/aahp/public/AAHP_Special_Sessions/2010_Salt_Lake_City/pm-1.pdf (accessed: 2010).
  10. ICD-9 Guidelines for Coding Diseases, Injures and Causes of Death. Revision 1975. Geneva, WHO, 1980, 752 p.
  11. Azizova T.V., Day R.D., Wald N. et al. The “Clinic” medical-dosimetric database of Mayak production association workers: structure, characteristics and prospects of utilization. Health Phys. 2008. Vol. 94. P. 449-458.
  12. Koshurnikova N.A., Shilnikova N.S., Okatenko P.V. Characteristics of the cohort of workers at the Mayak nuclear complex. Radiat. Res. 1999. Vol. 152. No. 4. P. 352-363.
  13. Preston D., Lubin J., Pierce D., McConney M. Epicure users guide. Hirosoft, Seattle, WA. 1993.
  14. Lipovetskii B.M. Infarkt, insul't, vnezapnaya smert'. Saint Petersburg: «Spetsial'naya literatura». 1997.
  15. United Nations Scientific Committee on the Effects of Atomic Radiation. Effects of ionizing radiation. UNSCEAR 2006 Report. 1. 2008. P. 325-383.
  16. Ozasa K., Shimizu Y., Suyama A. et al. Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: An Overview of Cancer and Noncancer Diseases. Radiat. Res. 2012. Vol. 177. P. 229-243.
  17. Shimizu Y., Kodama K., Nishi N. et al. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003. BMJ. 2010. Vol. 340. P. b5349. DOI: 10.1136/bmj.b5349.
  18. Yamada M., Wong F.L., Fujiwara S. et al. Non-cancer disease incidence in atomic bomb survivors, 1958-1998. Radiat. Res. 2004. Vol. 161. P. 622-632.
  19. Vrijheid M., Cardis E., Ashmore P. et al. Mortality from diseases other than cancer following low doses of ionizing radiation: results from the 15-country study of nuclear industry workers. Int. J. Epidemiol. 2007. Vol. 36. P. 1126-1135.
  20. McGeoghegan D., Binks K., Gillies M. et al. The noncancer mortality experience of male workers at British Nuclear Fuels plc, 1946-2005. Int. J. Epidemiol. 2008. Vol. 37. P. 506-518.
  21. Muirhead C.R., O’Hagan J.A., Haylock R.G.E. et al. Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers. Brit. J. Cancer, 2009. Vol. 100. P. 206-212.
  22. Kreuzer M., Dufey F., Sogl M. et al. External gamma radiation and mortality from cardiovascular diseases in the German WISMUT uranium miners cohort study, 1946-2008. Radiat. Biophys. 2012. Vol. 52. No. 1. P. 37-46. DOI: 10.1007/s00411-012-0446-5.
  23. Ivanov V., Maksioutov M.A., Chekin S.Y. et al. The risk of radiation-induced cerebrovascular disease in Chernobyl emergency workers. Health Phys. 2006. Vol. 90. P. 199-207.
  24. Krestinina L.Y., Epifanova S., Silkin S. et al. Chronic low-dose exposure in the Techa River Cohort: risk of mortality from circulatory diseases. Rad. Environ. Biophys. 2013. Vol. 52. No. 1. P. 47-57. DOI: 10.1007/s00411-012-0438-5.
  25. Grosche B., Lackland D.T., Land C.E. et al. Mortality from cardiovascular diseases in the Semipalatinsk historical cohort, 1960-1999, and its relationship to radiation exposure. Radiat. Res. 2011. Vol. 176. P. 660-669.
  26. Little M.P., Azizova T.V., Bazyka D. et al. Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks. Environ. Health Perspect. 2012. Vol. 120. P. 1503-1511. DOI: 10.1289/ehp.1204982.
  27. Akiba S. Circulatory disease risk after low-level ionizing radiation exposure. Radiat. Emerg. Med. 2013. Vol. 2. No. 2. P. 13-22.
  28. ICRP-2012. ICRP Statement on Tissue Reactions. Early and late effects of radiation in normal tissues and organs — threshold doses for tissue reactions in a radiation protection context. ICRP Publication 118. Ann. ICRP. Vol. 41. No. 1/2.
  29. Little M.P., Tawn E.J., Tzoulaki I. et al. Review and meta-analysis of epidemiological associations between low/moderate doses of ionizing radiation and circulatory disease risks and their possible mechanisms. Radiat. Environ Biophys. 2010. DOI: 10.1007/s00411-009-0250-z.
  30. Little M.P. A review of non-cancer effects, especially circulatory and ocular diseases. Radiat. Environ Biophys. 2013. DOI: 10.1007/s00411-013-0484-7.
  31. Borghini A., Gianicolo E.A.L., Picano E., Andreassi M.G. Ionizing radiation and atherosclerosis: Current knowledge and future challenges. Elsevier 2013. Vol. 230. P. 40-47.
  32. Lowe D., Raj K. Premature aging induced by radiation exhibits pro-atherosclerotic effects mediated by epigenetic activation of CD44 expression. Aging Cell. 2014. P. 1-11. DOI: 10.1111/acel.12253.

For citation: Azizova TV, Haylock R, Moseeva MB, Pikulina MV, Grigorieva E.S. Cerebrovascular Diseases Incidence and Mortality in an Extended Mayak Worker Cohort: 1948-1982. Medical Radiology and Radiation Safety. 2015;60(4):43-61. Russian.

PDF (RUS) Full-text article (in Russian)

Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 4. P. 27-35

RADIATION SAFETY

B.Ja. Narkevich1,2, Yu.V. Lysak3,4

Radiation Safety in the Ambulatory Use of Therapeutic Radiopharmaceuticals<

1. Institute of Medical Physics and Engineering, Moscow, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. N.N. Blokhin Cancer Research Center of RAMS, Moscow; 3. National Research Nuclear University MEPhI, Moscow; 4. Russian Scientific Center of Radiology and Nuclear Medicine, Moscow

ABSTRACT

Purpose: To determine the feasibility of the use of therapeutic radiopharmaceuticals (RN) in ambulatory mode without hospitalization for radionuclide therapy.

Material and methods: We performed computational studies of radiation safety of individuals from the population being in contact with the patient, which received particular therapeutic radiopharmaceuticals labeled with one of 19 β-γ-emitting radionuclides or one of 4 β-emitting radionuclides or one of 6 α-β-γ-emitting radionuclides in ambulatory mode. Criterion validity outpatient regimen is the effective dose of external exposure of these persons. Based on the dose limit for the population installed by NRB-99/2009, the maximum permissible activity of these radionuclides for various geometries and standard time exposure scenario was calculated.

Results and conclusions: It is shown that even for conservative exposure conditions outpatient mode of application is quite valid for all therapeutic radiopharmaceuticals labeled with any of these radionuclides, with the exception only for radiopharmaceuticals labeled with 131I.

Key words: radionuclide therapy, therapeutic radiopharmaceuticals, outpatient mode of application, radiation safety

REFERENCES

  1. Normy radiatsionnoi bezopasnosti (NRB-99/2009). SP 2.6.1.2523-09. (In Russ.).
  2. Release of Patients after Therapy with Unsealed Radionuclides. Recommendation of the ICRP Publication 94. Annals of the ICRP. 2004. Vol. 34. No. 2. 80 p.
  3. IAEA Publication 1417. Release of Patients after Radionuclide Therapy. Safety Reports Series No. 63. IAEA, Vienna. 2009.
  4. Balonov M.I., Golikov V.Yu., Zvonova I.A. Radiologicheskie kriterii vypiski patsienta iz kliniki posle radionuklidnoi terapii ili brakhiterapii s implantatsiei zakrytykh istochnikov // Radiatsionnaya gigiena. 2009. Vol. 2. No. 4. P. 5-9. (In Russ.).
  5. Narkevich B.Ya., Zinov'eva N.P. Urovni oblucheniya otdel'nykh lits iz naseleniya ot patsientov s vvedennymi radiofarmpreparatami. Medical Radiology and Radiation Safety. 2002. Vol. 47. No. 1. P. 27-33. (In Russ.).
  6. Shishkanov N.G., Bakun Yu.M., Roziev R.A. O radiatsionnoi bezopasnosti otdel nykh lits iz naseleniya pri obshchenii s patsientami, proshedshimi kurs radioiodoterapii. Medical Radiology and Radiation Safety. 2001. Vol. 46. No. 5. P. 34-46. (In Russ.).
  7. Narkevich B.Ya., Shiryaev S.V., Klepov A.N., Lysak Yu.V. Radiatsionno-gigienicheskoe obosnovanie radionuklidnoi terapii v ambulatornom rezhime. Radiatsionnaya gigiena. 2014. No. 2. P. 26-38. (In Russ.).
  8. Consolidated Guidance about Materials Licensees. Rep. NUREG-1556: Nuclear Regulatory Commission. Washington, DC, 2008. Vol. 9. 28 p.
  9. ICRU Report 57. Conversion Coefficients for Use in Radiological Protection against External Radiation. 1998. 137 p.
  10. Gusev N.G., Kovalev E.E., Osanov D.P., Popov V.I. Zashchita ot izlucheniya protyazhennykh istochnikov. Moscow: Gosatomizdat. 1961. 250 p. (In Russ.).
  11. Mashkovich V.P., Kudryavtseva A.V. Zashchita ot ioniziruyushchikh izluchenii: spravochnik. Moscow: Energoatomizdat. 1995. 496 p. (In Russ.).
  12. ICRP Publication 107. Nuclear Decay Data for Dosimetric Calculations. Annals of the ICRP. Vol. 38. No. 3. P. 7-96.
  13. Neves M., Teixeira F.C., Antunes I. et al. Chemical and biological evaluation of 153Sm and 46/47Sc complexes of indazolebisphosphonates for targeted radiotherapy. Appl. Radiat. Isotopes. 2011. Vol. 69. No. 1. P. 80-84.
  14. Novak-Hofer I., Schubiger P.A. Copper-67 as a therapeutic nuclide for radimmunotherapy. Eur. J. Nucl. Med. Mol. Imaging, 2002. Vol. 29. No. 6. P. 821-830.
  15. Lewington V.J. Bone-seeking radionuclides for therapy. J. Nucl. Med. 2005. Vol. 46. No. 1. Suppl. P. 38S-47S.
  16. Fondell A. Two-step targeting for effective radionuclide therapy. Preclinical evaluation of 125I-labelling anthracycline delivered by tumor targeting liposomes. Dis. Ph.D., Uppsala Univ. 2011.
  17. Gerard S.K., Park H.M. 131I dosimetry and thyroid stunning. J. Nucl. Med. 2003. Vol. 44. No. 12. P. 2039-2040.
  18. Pinch C., Pilger A., Schwameis E. et al. Radiation synovectomy using 165Dy ferric-hydroxide and oxidative DNA damage in patients with different types of arthritis. J. Nucl. Med. 2000. Vol. 41. No. 2. P. 250-257.
  19. Valkema R., deJong M., Bakker W.H. et al. Phase I study of peptide receptor radionuclide therapy with [111In-DTPA]octreotide: the Rotterdam experience. Seminars Nucl. Med. 2002. Vol. 32. No. 2. P. 110-122.
  20. Giralt S., Bensinger W., Goodman N. et al. 166Ho-DOTPM plus melphalan followed by peripheral blood stem cell transplantation in patients with multiple myeloma: results of two phase 1/2 trials. Blood. 2003, 102. No. 7. P. 2684-2691.
  21. Das T., Chakraborty S., Sarma H.D. et al. 170Tm-EDTMP: a potential cost-effective alternative 89SrCl2 for bone pain palliation. Nucl. Med. Biol. 2009. Vol. 36. No. 5. P. 561-568.
  22. Ando A., Takeshita M., Ando I. et al. Study of subcellular distribution of 169Yb and 111In in tumor and liver. Radioisotopes, 1977. Vol. 26. No. 3. P. 169-174.
  23. Chakraborty S., Das T., Banerjee Sh. et al. 175Yb labeled hydroxyapatite: a potential agent for use in radiation synovectomy of small joints. Nucl. Med. Biol. 2006. Vol. 33. No. 4. P. 585-591.
  24. Bakker W.H., Breeman N.A., Kwekkeboom D.J. et al. Practical aspects of peptide receptor radionuclide therapy 177Lu-[DOTA0,Tyr3]octreotat. Q. J. Nucl. Med. Imaging, 2006. Vol. 50. No. 4. P. 265-271.
  25. Kannan R., Zambre A., Chanda N. et al. Functionalized radioactive gold nanoparticles in tumor therapy. Nanomedicine and Nanobiotechnology. 2011. Vol. 4. No. 1. P. 42-51.
  26. Abrams P.G., Fritzberg A.R. Radioimmunotherapy of Cancer. New York: CRC Press. 2000. 416 p.
  27. Zalutsky M.R., Reardon D.A, Bigner D.D. Targeted α-particle radiotherapy with 211At labeled monoclonal antibodies. Nucl. Med. Biol. 2007. Vol. 34. No. 7. P. 779-785.
  28. Miao Y., Hylarides M., Fisher D.R. et al. Melanoma therapy via peptide-targeted alpha radiation. Clin. Cancer Res. 2005. Vol. 11. No. 15. P. 5615-5621.
  29. Yong K., Brechbiel M.W. Towards of 212Pb as a clinical therapeutic; getting the lead in. Dalton Trans. 2011. Vol. 40. No. 23. P. 6068-6076.
  30. Sartor O., Maalouf B.N., Hauck C.R., Macklis R.M. Targeted use of alpha particles: current status in cancer Nucl. Med. Radiat. Ther. 2012. Vol. 3. No. 4. P. 1000136, 8 p.
  31. Miederer M., Scheinberg D.A., McDevitt M.R. Realizing the potential of actinium-225 radionuclide generator in targeted alpha-particle therapy application. Adv. Drug Deliv. Rev. 2008. Vol. 60. No. 12. P. 1371-1382.
  32. Allen B.J. Systemic targeted alpha radiotherapy for cancer. Radiats. onkologiya i yadernaya meditsina. 2013. No. 2. P. 82-98.
  33. Mukhopadhyay B., Mukhopadhyay K. Application of the carrier free radioisotopes of second transition series elements in the field of nuclear medicine. J. Nucl. Med. Ther. 2011. Vol. 2. No. 2. P. 1000115, 9 p.
  34. Hillegonds D.J., Franklin S., Shelton D.K. et al. The management of painful bone metastases with an emphasis on radionuclide therapy. J. Natl. Med. Assoc. 2007. Vol. 99. No. 7. P. 785-794.
  35. Kucuk O.N., Soydal C., Lacin S. et al. Selective intraarterial radionuclide therapy with 90Y microspheres for unresectable primery and metastatic liver tumors. World J. Surg. Oncol. 2011. Vol. 9. No. 1. P. 86-96.
  36. Rajendran J.G. Therapeutic Radioisotopes. In: Nuclear Medicine Therapy. Ed. by F. Eary, W. Brenner. New York, London: Informa Healthcare. 2007. 195 p.
  37. Ehrhardt G.I., Volkert W., Goekeler W.F., Kapsch D.N. A new Cd-115 leads to In-115m radionuclide generator. J. Nucl. Med. 1983. Vol. 24. No. 4. P. 342-352.
  38. Khabriev R.U. Rukovodstvo po eksperimental'nomu (doklinicheskomu) izucheniyu novykh form farmakologicheskikh veshchestv. Moscow: Meditsina. 2005. (In Russ.).
  39. Lubin E. Definitive improvement in the approach to the treated patient as a radioactive source. J. Nucl. Med. 2002. Vol. 43. P. 364-365.
  40. Gigienicheskie trebovaniya po obespecheniyu radiatsionnoi bezopasnosti pri provedenii luchevoi terapii s pomoshch yu otkrytykh radionuklidnykh istochnikov. SanPiN 2.6.1.2368-08. Moscow, Federal nyi tsentr gigieny i epidemiologii Rospotrebnadzora. 2009. 74 p. (In Russ.).
  41. Osnovnye sanitarnye pravila obespecheniya radiatsionnoi bezopasnosti OSPORB 99/2010. Sanitarnye pravila i normativy SP 2.6.1.2612-10. (v red. izmenenii No. 1, utv. postanovleniem Glavnogo gosudarstvennogo sanitarnogo vracha RF ot 16.09.2013 No. 43). (In Russ.).
  42. Neves M., Kling A., Oliveira A. Radionuclides used for therapy and suggestion for new candidates. J. Radioanalyt. Nucl. Chem. 2005. Vol. 266. No. 3. P. 377-384.

For citation: Narkevich BJa, Lysak YuV. Radiation Safety in the Ambulatory Use of Therapeutic Radiopharmaceuticals. Medical Radiology and Radiation Safety. 2015;60(4):27-35. Russian.

PDF (RUS) Full-text article (in Russian)

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2931165
Today
Yesterday
This week
Last week
This month
Last month
For all time
696
3096
8403
33458
29461
113593
2931165

Forecast today
1728


Your IP:216.73.216.244