JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Issues journals

Medical Radiology and Radiation Safety. 2024. Vol. 69. № 2

DOI:10.33266/1024-6177-2024-69-2-30-37

N.K. Shandala, S.M. Kiselev, V.A. Seregin, A.A. Filonova, D.V. Isaev 

Scientific and Methodological Support of Health and Epidemiological Supervision during the Remediation of Nuclear Legacy Facilities and Sites and Tasks for the Future

A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia

Contact person: Nataliya K. Shandala, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

ABSTRACT

The article deals with and characterizes the main achievements in one of the leading areas in the activities of the SRC-FMBC – medical and health physics support of radiation safety when managing the nuclear legacy of the Russian Federation. An advanced methodology for radiation and health physics monitoring is presented, which has become a reliable guarantee of an adequate response to current challenges associated with the operation of sites for spent nuclear fuel and radioactive waste temporary storage in the Northwest Russia. Special attention is paid to topical issues of radiation and health physics survey of the coastal part of the areas inhabited by the population of the Arctic zone of the Russian Federation and the development of regulatory documents. Prospects for further development of research in order to improve radiation safety have been identified.

Keywords: nuclear and radiation safety, nuclear legacy, radiation and health physics monitoring, population, personnel, radionuclides, doses, regulatory documents

For citation: Shandala NK, Kiselev SM, Seregin VA, Filonova AA, Isaev DV. Scientific and Methodological Support of Health and Epidemiological Supervision during the Remediation of Nuclear Legacy Facilities and Sites and Tasks for the Future. Medical Radiology and Radiation Safety. 2024;69(2):30–37. (In Russian). DOI:10.33266/1024-6177-2024-69-2-30-37

 

References

1. Kiselev S.M., Shandala N.K., Zozul Yu.N.:Kiselev S, Shandala N, Zozul Yu. Advanced Technology of Comprehensive Ecological and Heealth Physics Monitoring at Nuclear Legacy Sites. Khronicheskoye Radiatsionnoye Vozdeystviye: Otdalennyye Mediko-Biologicheskiye Effekty = Chronic Radiation Exposure: Long-Term Medical and Biological Effects. Proceedings of the VII International Scientific Conference. 2022. P. 200-201 (In Russ.).

2. Isayev D., Starinskiy V., Tesnov I., Shlygin V. Results of a Study of the Radiation Ecological Situation in the Areas of Shipyards Involved in Decommissioning and Dismantling of Nuclear Submarines and Servicing Nuclear Technological Vessels. Database Registration Certificate RU 2022621039, 05.05.2022. Application No. 2022620875 dated April 27, 2022 (In Russ.).

3. Shandala N., Sneve M., Seregin V., Filonova A. Radiation Survey and Environmental Impact Assessment at the Site of Temporary Storage at Andreeva Bay (16 Years of Studies). Radiol. Prot. 2021;41:S406–S426.

4. Filonova A., Seregin V. Migration of Manmade Radionuclides in Soils and Bottom Sediments of the Coastal Stripe of the SevRAO Site for Temporary Storage and Its Impact on Potential Contamination of Marine Water Area. Gigiyena i Sanitariya = Hygiene and Sanitation. 2014;9;2:18–22 (In Russ.).

5. Chizhov K., Shandala N., Simakov A., Kryuchkov V., et al. Radiation Situation Dynamics at the Andreeva Bay Site for Temporary Storage of Spent Nuclear Fuel and Radioactive Waste over the Period 2002-2016. Radiol. Prot. 2018;38:S480–S509.

6. Shandala N., Starinsky V., Semenova M., Filonova A., et al. Role of the SRC-FMBC in Provision of Medical and Epidemiological Wellbeing and Radiation Safety in the Arctic Zone of the Russian Federation. Meditsina Katastrof = Disaster Medicine. 2023;1:5–8 (In Russ.).

7. Starinskiy V., Isayev D., Tesnov I. Database Including the Results of Studies of the Radiation Situation in the Areas of the Village of Teriberka, the Island of Kildin and the Village of Amderma. Database Registration Certificate RU 2022621890, 01.08.2022. Application No. 2022621278 dated June 07, 2022 (In Russ.).

 

 

 PDF (RUS) Full-text article (in Russian)

  

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. collection and processing and writing of the text – Shandala N., Kiselev S., Seregin V., Filonova A., Isaev D. – equal participation.

Article received: 20.11.2023. Accepted for publication: 27.12.2023. 

 

Medical Radiology and Radiation Safety. 2024. Vol. 69. № 2

DOI:10.33266/1024-6177-2024-69-2-38-48

A.N. Koterov1, L.N. Ushenkova1, A.A. Wainson2, I.G. Dibirgadzhiev1,
M.V. Kalinina1, A.Yu. Bushmanov1

Dose Dependence for Mortality from Circulatory Diseases in Nuclear Workers (Systematic Review and Pooled Analysis):
Lack of Low Doses Effect and Confirmation of UNSCEAR and ICRP Threshold at 0.5 Gy

1 A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia

2 N.N. Blokhin Russian Cancer Research Center, Moscow, Russia

Contact person: Alexey N. Koterov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Abstract

Based on the maintained database (source database) on effects in nuclear workers (NW), a selection of major studies of the relationship between mortality from diseases of the circulatory system (CVD; codes 390–459 according to ICD-9 and I00–I99 according to ICD-10) and external radiation dose. The sample included 30 papers and covered cohorts from 6 countries plus an NW cohort from 15 countries. For the sample, in most cases based on published standardized mortality rates (SMR), the relative risks (RR) of mortality from CVD were calculated for the selected dose groups with subsequent processing of the material for outliers. Initial: n = 207; final sample: n = 199; covers very low (0–10 mSv; 15.8 % of the sample), low (>10–100 mSv; 45.8 %) and moderate (>100–1000 mSv; 36.4 %) doses; data for high doses (>1000 mSv; n = 4; 2 % of the sample), due to dubiousness, were excluded.

A systematic review and pooled analysis of the RR for mortality from CVD depending on the dose on an ordinal scale was performed on the final sample. For the entire dose range (0–1000 mSv) and for moderate doses, statistically significant trends in increasing RR were found when expressed in five types of regressions (except for the logarithmic one for the entire range). Although the r values were small (0.230–0.293), the effect was clear. The ERR per 1 Gy (Sv) calculated for moderate doses using linear regression was 0.54. This value is higher than those obtained previously in meta-analyses, but should be considered as the most adequate.

No dose relationship was found for the very low + low dose range (0–100 mGy); the r coefficients for the regressions were either negligible or negative at statistical insignificance. For the subthreshold dose range for CVD mortality after exposure (according to UNSCEAR and ICRP: 500 mSv), only a weak trend towards an increase in RR was found, statistically insignificant, despite the large sample size (n = 191), while for the dose range 500–1000 mSv, the highest tendency among the pooled analyzes was revealed to increase the risk depending on the level of exposure (r = 0.297–0.423; statistically insignificant due to the small sample size: n = 8).

It is concluded that for mortality from CVD after irradiation, the threshold value of 0.5 Gy established by UNSCEAR and ICRP and confirmed in the present pooled analysis should be strictly adhered to. Due to the lack of effects of low doses, it is inappropriate to raise the issue of low dose effects in the context of these pathologies.

Keywords: diseases of the circulatory system, mortality, radiation, nuclear workers, low doses, moderate doses, effect threshold

For citation: Koterov AN, Ushenkova LN, Wainson AA, Dibirgadzhiev IG, Kalinina M, Bushmanov AYu. Dose Dependence for Morta-

lity from Circulatory Diseases in Nuclear Workers (Systematic Review and Pooled Analysis): Lack of Low Doses Effect and Confirmation of Unscear and Icrp Threshold at 0.5 Gy. Medical Radiology and Radiation Safety. 2024;69(2):38–48. (In Russian). DOI:10.33266/1024-6177-2024-69-2-38-48 

 

References

1. Manual of the International Statistical Classification of Diseases, Injuries, and Causes of Death: Based on the Recommendations of the Ninth Revision Conference, 1975, and Adopted by the Twenty-ninth World Health Assembly, 1975 revision. Volume I. World Health Organization: Geneva, 1977. 353 p. (Руководство по международной статистической классификации болезней, травм и причин смерти. Классификация основана на рекомендациях Конференции по Девятому пересмотру (‎1975 г.)‎ и принята Двадцать девятой Всемирной ассамблеей здравоохранения. Пер. с англ. Том 1. ВОЗ, Женева. М.: Медицина, 1980. – 758 с.)

2. Classification of Diseases, Functioning, and Disability. CDC. Center for Disease Control and Prevention. NCHS. National Center for Health Statistics. World Health Organization (WHO). 2021. https://www.cdc.gov/nchs/icd/index.htm (address data 2024/01/09).

3. UNSCEAR 2006. Report to the General Assembly, with Scientific Annexes. Vol. I. Annex B Epidemiological evaluation of cardiovascular disease and other non-cancer diseases following radiation exposure. United Nations. – New York, 2008. P. 325–383.

4. UNSCEAR 2010. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation 2010. Fifty-seventh session, includes Scientific Report: summary of low-dose radiation effects on health. United Nations. – New York, 2011. – 106 p.

5. UNSCEAR 2013. Report to the General Assembly, with Scientific Annex. Vol. II. Annex B. Effects of radiation exposure of children. United Nations. – New York, 2013. P. 1–268.

6. UNSCEAR 2019. Report to the General Assembly, with Scientific Annexes. Annex A. Evaluation of selected health effects and inference of risk due to radiation exposure. – New York, 2020.
P. 21–192.

7. ICRP Publication 118. ICRP Statement on tissue reactions and early and late effects of radiation in normal tissues and organs – threshold doses for tissue reactions in a radiation protection context. Annals of the ICRP. Ed. by C.H. Clement. Amsterdam – New York: Elsevier, 2012. – 325 p.

8. Hamada N., Fujimichi Y. Classification of radiation effects for dose limitation purposes: history, current situation and future prospects // J. Radiat. Res. 2014. Vol. 55. № 4. P. 629–640. https://doi.org/10.1093/jrr/rru019.

9. Shimizu Y., Kodama K., Nishi N., Kasagi F., Suyama A., Soda M. et al. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003 // Brit. Med. J. 2010. V. 340. Article b5349. 8 p. https://doi.org/10.1136/bmj.b5349.

10. Котеров А.Н., Вайнсон А.А. Конъюнктурный подход к понятию о диапазоне малых доз радиации с низкой ЛПЭ в зарубежных обзорных источниках: нет изменений за 18 лет. Медицинская радиология и радиационная безопасность. 2022. Т. 67. № 5. С. 33–40. Koterov AN, Wainson AA. Conjunctural approach to the concept of low dose radiation range with low let in foreign review sources: no changes for 18 years. Medits. Radiologiia i Radiat. Bezopasnost (Medical Radiology and Radiation Safety; Moscow). 2022;67(5):33–40. (In Russ., Engl. abstr.). https://doi.org/10.33266/1024-6177-2022-67-5-33-40.

11. Котеров А.Н. От очень малых до очень больших доз радиации: новые данные по установлению диапазонов и их экспериментально-эпидемиологические обоснования // Мед. радиология и радиац. безопасность. 2013. Т. 58. № 2. С. 5–21. Koterov A.N. From very low to very large doses of radiation: new data on ranges definitions and its experimental and epidemiological basing. Medits. Radiologiia i Radiat. Bezopasnost (‘Medical Radiology and Radiation Safety’; Moscow). 2013;58(2):5–21. (In Russ., Engl. abst.)

12. Котеров А.Н., Ушенкова Л.Н., Вайнсон А.А., Дибиргаджиев И.Г., Бирюков А.П.. Избыточный относительный риск смертности от болезней системы кровообращения после облучения. Сообщение 1. Обзор обзоров и мета-анализов, декларирующих эффекты малых доз // Радиац. биология. Радиоэкология. 2023, том 63, № 1, с. 3–33. Koterov A.N., Ushenkova L.N., Wainson A.A., Dibirgadzhiev I.G., Biryukov A.P. Excess relative risk of mortality from disease of the circulation system after irradiation. Report 1. Overview of reviews and meta-analysis declared effects of low doses // Radiatsionnaya Biologiya. Radioekologiya. (Radiation biology. Radioecology; Moscow). 2022;63(1):3–33. (In Russ., Engl. abstr.) https://doi.org/10.31857/S0869803123010095.

13. Koterov A.N., Ushenkova L.N., Wainson A.A., Dibirgadzhiev I.G., Biryukov A.P. Excess relative risk of mortality from diseases of the circulation system after irradiation: report 1. overview of reviews and meta-analysis declared effects of low doses. Biology Bulletin (Moscow). 2023. V. 50. № 12. P. 3155–3183. https://doi.org/10.1134/S1062359023120142.

14. Little M.P., Azizova T.V., Richardson D.B., Tapio S., Bernier M.-O., Kreuzer M. et al. Ionising radiation and cardiovascular disease: systematic review and meta-analysis // Brit. Med. J. 2023. V. 380. Article e072924. 16 p. (with Suppl. 81 p.). https://doi.org/10.1136/bmj-2022-072924.

15. Котеров А.Н., Ушенкова Л.Н., Вайнсон А.А. Работники ядерной индустрии – к вопросу об унификации русскоязычной терминологии (краткое сообщение) // Медицинская радиология и радиационная безопасность. 2023. Т. 68. № 3. С. 80–84. Koterov AN, Ushenkova LN. Wainson AA. Nuclear workers – on the question of unification of russian-language terminology (brief report). Medits. Radiologiia i Radiat. Bezopasnost (Medical Radiology and Radiation Safety; Moscow). 2023;68(3):80–84. (In Russ., Engl. abstr.) https://doi.org/10.33266/1024-6177-2023-68-3-80-84.

16. Котеров А.Н., Ушенкова Л.Н., Калинина М.В., Бирюков А.П. Краткий обзор мировых исследований лучевых и нелучевых эффектов у работников ядерной индустрии. Медико-биологические проблемы жизнедеятельности (Гомель). 2020. № 1. С. 17–31. Koterov A.N., Ushenkova L.N., Kalinina M.V., Biryukov A.P. Brief review of world researches of radiation and non-radiation effects in nuclear industry workers. Medical and Biological Problems of Life Activity (Gomel). 2020; (1): 17–31. (In Russ., Engl. abstr.)

17. Котеров АН, Ушенкова ЛН, Калинина МВ, Бирюков АП. Сравнение риска смертности от солидных раков после радиационных инцидентов и профессионального облучения // Медицина катастроф. 2021. № 3. С. 34–41. Koterov A.N., Ushenkova L.N., Kalinina M.V., Biryukov A.P. Comparison of the risk of mortality from solid cancers after radiation incidents and occupational exposures. Meditsina katastrof (‘Disaster Medicine’, Moscow) 2021;(3):34–41 (In Russ. Engl. abstr.) https://doi.org/10.33266/2070-1004-2021-3-34-41.

18. Котеров А.Н., Туков А.Р., Ушенкова Л.Н., Калинина М.В., Бирюков А.П. Средняя накопленная доза облучения для работников мировой ядерной индустрии: малые дозы, малые эффекты. Сравнение с дозами для медицинских радиологов // Радиационная биология. Радиоэкология. 2022. Т. 62. № 3. С. 227–239. Koterov A.N., Tukov A.R.. Ushenkova L.N., Kalinina M.V., Biryukov A.P. Average accumulated radiation doses for world nuclear workers: low doses, low effects. Comparison with doses for medical radiologists. Radiatsionnaya Biologiya. Radioekologiya. (Radiation biology. Radioecology; Moscow). 2022;62(3):227–39. (In Russ., Engl. abstr.) https://doi.org/10.31857/S0869803122030043. (In Russ. Engl. abstr.)

19 Koterov A.N., Tukov A.R., Ushenkova L.N., Kalinina M.V., Biryukov A.P. Average accumulated radiation doses for global nuclear workers: low doses, low effects, and comparison with doses for medical radiologists // Biology Bulletin. 2022. V. 49. № 12. P. 2475–2485. https://doi.org/10.1134/S106235902212007X.

20. Котеров А.Н., Ушенкова Л.Н., Дибиргаджиев И.Г., Вайнсон А.А., Калинина М.В., Бирюков А.П. Избыточный относительный риск катарактогенных нарушений хрусталика у работников ядерной индустрии: систематический обзор и мета-анализ // Медицинская радиология и радиационная безопасность. 2023. Т. 68. № 3. С. 21–32. Koterov AN, Ushenkova LN, Dibirgadzhiev IG, Wainson AA, Kalinina MV, Biryukov AP. Excess relative risk of cataractogenic lense disorders in nuclear workers: systematic review and meta-analysis. Medits. Radiologiia i Radiat. Bezopasnost (Medical Radiology and Radiation Safety; Moscow). 2023;68(3):21–32. (In Russ. Engl. abstr.). https://doi.org/10.33266/1024-6177-2023-68-3-21-32.

21. Котеров А.Н., Ушенкова Л.Н., Калинина М.В., Бирюков А.П. «Эффект здорового работника» по показателям общей смертности и смертности от злокачественных новообразований у персонала предприятий ядерной и химической индустрии: мета-анализы // Медицинская радиология и радиационная безопасность. 2023. Т. 68. № 4. С. 43–50. Koterov AN, Ushenkova LN, Kalinina MV, Biryukov AP. The ‘Healthy worker effect’ on indexes of total mortality and malignant neoplasms mortality for nuclear and chemical workers: meta-analysis. Medits. Radiologiia i Radiat. Bezopasnost (Medical Radiology and Radiation Safety; Moscow). 2023;68(4):43–50. (In Russ., Engl. abstr.) https://doi.org/10.33266/1024-6177-2023-68-4-43-50.

22. Boice JD Jr. The importance of radiation worker studies // J. Radiol. Prot. 2014. V. 34. № 3. P. E7–E12. https://doi.org/10.1088/0952-4746/34/3/E7.

23. Wakeford R. The growing importance of radiation worker studies // Br. J. Cancer. 2018. V. 119. № 5. P. 527–529. https://doi.org/10.1038/s41416-018-0134-6.

24. Котеров А.Н., Ушенкова Л.Н., Бирюков А.П. Критерий Хилла «Временная зависимость». Обратная причинность и ее радиационный аспект // Радиац. биология. Радиоэкология. 2020. Т. 60. № 2. С. 115–152. Koterov A.N., Ushenkova L.N., Biryukov A.P. Hill’s criteria ‘Temporality’. Reverse causation and its radiation aspect // Radiats. Biol. Radioecol. (‘Radiation biology. Radioecology’; Moscow). 2020. V. 60. № 2. P. 115–152. (In Russ. Engl. abstr.) https://doi.org/10.31857/S086980312002006X.

25. Koterov A.N., Ushenkova L.N., Biryukov A.P. Hill’s Temporality criterion: reverse causation and its radiation aspect // Biology Bulletin. 2020. V. 47. № 12. P. 115–152. https://doi.org/10.1134/S1062359020120031.

26. Simon S.L., Linet M.S. Radiation-exposed populations: who, why, and how to study // Health Phys. 2014. V. 106. № 2. P. 182–195. https://doi.org/10.1097/HP.0000000000000006.

27. Ashmore J.P., Krewski D., Zielinski J.M., Jiang H., Semenciw R., Band P.R. First analysis of mortality and occupational radiation exposure based on the National Dose Registry of Canada // Am. J. Epidemiol. 1998. V. 148. № 6. P. 564–574. https://doi.org/10.1093/oxfordjournals.aje.a009682.

28. UNSCEAR 1972. Report to the General Assembly, with Scientific Annex. Vol. I. ‘Level’. Annex C. Doses from occupational exposure. United Nations. – New York. 1972. P. 173–86.

29. Blettner M., Sauerbrei W., Schlehofer B., Scheuchenpflug T., Friedenreich C. Traditional reviews, meta-analyses and pooled analyses in epidemiology // Int. J. Epidemiol. 1999. V. 28. № 1. P. 1–9. https://doi.org/10.1093/ije/28.1.1.

30. Archer V.E., Coons T., Saccomanno G., Hong D.Y. Latency and the lung cancer epidemic among United States uranium miners // Health Phys. 2004. V. 87. № 5. P. 480–489. https://doi.org/10.1097/01.hp.0000133216.72557.ab.

31. Kendall G.M., Muirhead C.R., Mac Gibbon B.H., O’Hagan J.A., Conquest A.J., Goodill A.A., Butland B.K., Fell T.P, Jackson D.A., Webb M.A. Mortality and occupational exposure to radiation: first analysis of the National Registry for Radiation Workers // Brit. Med. J. 1992. V. 304. № 6821. P. 220–225. https://doi.org/10.1136/bmj.304.6821.220.

32. Muirhead C.R., Goodill A.A., Haylock R.G., Vokes J., Little M.P., Jackson D.A., O’Hagan J.A., Thomas J.M., Kendall G.M., Silk T.J., Bingham D., Berridge G.L. Occupational radiation exposure and mortality: second analysis of the National Registry for Radiation Workers // J. Radiol. Prot. 1999. V. 19. № 1. P. 3–26. https://doi.org/10.1088/0952-4746/19/1/002.

33. Muirhead C.R., O’Hagan J.A., Haylock R.G.E., Phillipson M.A., Willcock T., Berridge G.L.C., Zhang W. Third analysis of the National Registry for Radiation Workers: occupational rxposure to ionizing radiation in relation to mortality and cancer incidence. Health Protection Agency. Centre for Radiation, Chemical and Environmental Hazards. Radiation Protection Division. HPA-RPD-062. – Chilton, Didcot, Oxfordshire OX11 0RQ, 2009b. – 150 p.

34. Muirhead C.R., O’Hagan J.A., Haylock R.G.E., Phillipson M.A., Willcock T., Berridge G.L.C., Zhang W. Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers // Br. J. Cancer. 2009a. V. 100. № 1. P. 206–212. Supply. https://doi.org/10.1038/sj.bjc.6604825.

35. Azizova T.V., Grigorieva E.S., Hunter N., Pikulina M.V., Moseeva M.B. Risk of mortality from circulatory diseases in Mayak workers cohort following occupational radiation exposure // J. Radiol. Prot. 2015. V. 35. № 3. P. 517–538. https://doi.org/10.1088/0952-4746/35/3/517.

36. Azizova T.V., Batistatou E., Grigorieva E.S., McNamee R., Wakeford R., Liu H., de Vocht F., Agius R.M. An Assessment of Radiation-Associated Risks of Mortality from Circulatory Disease in the Cohorts of Mayak and Sellafield Nuclear Workers // Radiat. Res. 2018. V. 189. № 4. P. 371–388. https://doi.org/10.1667/RR14468.1.

37. Azizova T.V., Bannikova M.V., Grigoryeva E.S., Briks K.V., Hamada N. Mortality from various diseases of the circulatory system in the Russian Mayak nuclear worker cohort: 1948–2018 // J. Radiol. Prot. 2022. V. 42. № 2. Article 021511. https://doi.org/10.1088/1361-6498/ac4ae3. DOI: 10.1088/1361-6498/ac4ae3

38. Азизова Т.В., Григорьева Е.С., Хантер Н., Пикулина М.В., Мосеева М.Б. Риск смерти от болезней системы кровообращения в когорте работников, подвергшихся хроническому облучению // Тер. Арх. 2017. Т. 89. № 1. С. 18–27. Azizova T.V., Grigoryeva E.S., Hunter N., Pikulina M.V., Moseeva M.B. Mortality from circulatory diseases in a cohort of patients exposed to chronic radiation. Ter. Arkh. 2017;89(1):18–27. (In Russ. Engl. abstr.) https://doi.org/10.17116/terarkh201789118-27.

39. Shilnikova N.S., Koshurnikova N.A., Bolotnikova M.G., Kabirova N.R., Kreslov V.V., Lyzlov A.F., Okatenko P.V. Mortality among workers with chronic radiation sickness // Health Phys. 1996. V. 71. № 1. P. 86–9. https://doi.org/10.1097/00004032-199607000-00014.

40. Gilbert E.S., Fry S.A., Wiggs L.D., Voelz G.L., Cragle D.L., Petersen G.R. Analyses of combined mortality data on workers at the Hanford Site, Oak Ridge National Laboratory, and Rocky Flats Nuclear Weapons Plant // Radiat. Res. 1989. V. 120. № 1. P. 19–35. https://doi.org/10.2307/3577633.

41. Gilbert E.S., Cragle D.L., Wiggs L.D. Updated analyses of combined mortality data for workers at the Hanford Site, Oak Ridge National Laboratory, and Rocky Flats Weapons Plant // Radiat. Res. 1993. V. 136. № 3. P. 408–421. https://doi.org/10.2307/3578555.

42. Gilbert E.S., Buchanan J.A. An alternative approach to analyzing occupational mortality data // J. Occup. Med. 1984. V. 26. № 11. P. 822–828. https://doi.org/10.1097/00043764-198411000-00012.

43. Gilbert E.S., Omohundro E., Buchanan J.A., Holter N.A. Mortality of workers at the Hanford site: 1945–1986 // Health Phys. 1993. V. 64. № 6.
P. 577–590. https://doi.org/10.1097/00004032-199306000-00001.

44. Zielinski J.M., Ashmore P.J., Band P.R., Jiang H., Shilnikova N.S., Tait V.K., Krewski D. Low dose ionizing radiation exposure and cardiovascular disease mortality: cohort study based on Canadian National Dose Registry of Radiation Workers // Int. J. Occup. Med. Environ. Health. 2009. V. 22.
№ 1. P. 27–33. https://doi.org/10.2478/v10001-009-0001-z.

45. Zablotska L.B., Ashmore J.P., Howe G.R. Analysis of mortality among Canadian nuclear power industry workers after chronic low-dose exposure to ionizing radiation // Radiat. Res. 2004. V. 161. № 6. P. 633–641. https://doi.org/10.1667/rr3170.

46. Котеров А.Н., Ушенкова Л.Н., Дибиргаджиев И.Г. База данных по стандартизованному отношению смертности (SMR all causes и SMR all cancer) для различных профессий (706 когорт/групп): максимальный «эффект здорового работника» – у космонавтов и врачей // Мед. труда и пром. экол. 2023. Т. 63. № 3. С. 179–192. Koterov A.N., Ushenkova L.N., Dibirgadzhiev I.G. Database on standardized mortality ratio (SMR all causes and SMR all cancer) for various professions (706 cohorts/groups): the maximum ‘effect of a healthy worker’ – in astronauts and doctors // Med. truda i prom. ekol. (Russian Journal of Occupational Health and Industrial Ecology; Moscow). 2023. V. 63. № 3. P. 179–192. (In Russ. Engl. abstr.) https://doi.org/10.31089/1026-9428-2023-63-3-179-192.

47. Котеров А.Н. Критерии причинности в медико-биологических дисциплинах: история, сущность и радиационный аспект. Сообщение 3. Часть 1: первые пять критериев Хилла: использование и ограничения // Радиац. биология. Радиоэкология. 2021. Т. 61. № 3. С. 300–332. Koterov A.N. Causal criteria in medical and biological disciplines: history, essence and radiation aspect. Report 3, Part 1: first five Hill’s criteria: use and limitations // Radiats. Biol. Radioecol. (‘Radiation biology. Radioecology’; Moscow). 2021. V. 61. № 3. P. 300–332. (In Russ. Engl. abstr.) https://doi.org/10.31857/S0869803121030085.

48. Кокунин В.А. Статистическая обработка данных при малом числе опытов // Укр. биохим. журн. 1975. Т. 47. № 6. С. 776–790. Kokunin V.A. Statistical processing of data from a small number of experiments // Ukr. Biokhim. Zh. (‘Ukrainian Journal of Biochemistry; Kiev). 1975. V. 47. № 6. P. 776–791. (In Russ.)

49. Mostarac P., Malaric R., Hegedusi H. Comparison of outliers elimination algorithms // Proc. 7th Intern. Conf., Smolenice, Slovakia. Measurement. 2009. P. 49–52. Also table ‘Chauvenet’s criterion for rejecting a reading’: https://chetaero.files.wordpress.com/2016/11/chauvenet.pdf (address data 2024/01/12).

50. Zablotska L.B. Mortality analysis of the Canadian and German uranium processing. Contract 87055-13-0577. Canadian Nuclear Safety Commission. Final Report. July 31, 2015.  – 43 p. http://www.nuclearsafety.gc.ca/eng/pdfs/research-project-R587-1.pdf (address data 2017/02/13; in 2024 source unavailable).

51. Zhivin M.S. Epidemiological study of workers employed in the French nuclear fuel industry and analysis of the health effects of uranium compounds according to their solubility // These de doctorat, (France); Universite Paris-Saclay, 2015. – 198 p. https://www.irsn.fr/FR/Larecherche/Formation_recherche/Theses/Theses-soutenues/DRPH/Documents/2015-These-Zhivin.pdf (address data 2024/01/12).

52. Котеров А.Н., Ушенкова Л.Н., Зубенкова Э.С., Калинина М.В., Бирюков А.П., Ласточкина Е.М. и др. Сила связи. Сообщение 2. Градации величины корреляции // Мед. радиология и радиац. безопасность. 2019. Т. 64. № 6. С. 12–24. Koterov A.N., Ushenkova L.N., Zubenkova E.S., Kalininna M.V., Biryukov A.P., Lastochkina E.M. et al. Strength of association. Report 2. Graduation of correlation size // Medits. Radiologiia Radiat. Bezopasnost (‘Medical Radiology and Radiation Safety’; Moscow). 2019. V. 64. № 6. P. 12–24. (In Russ. Engl. abstr.) https://doi.org/10.12737/1024-6177-2019-64-6-12-24.

53. ICRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP. Ed. by J. Valentin. – Amsterdam – New York: Elsevier, 2007. – 329 p.

54. Hamada N., Fujimichi Y. Classification of radiation effects for dose limitation purposes: history, current situation and future prospects // J. Radiat. Res. 2014. V. 55. № 4. P. 629–640. https://doi.org/10.1093/jrr/rru019.

55. Rubin P, Casarett G. A direction for clinical radiation pathology. The tolerance dose. In: ‘Radiation Effects and Tolerance, Normal Tissue’. Ed. by JM Vaeth. 6th Annual San Francisco Cancer Symposium, San Francisco, Calif., October 1970. Proceedings. Front Radiat Ther Oncol. Basel, Karger, 1972. V. 6. P. 1–16. https://doi.org/10.1159/000392794.

56. Cornfield J. Statistical relationships and proof in medicine [Editorial] // Am. Statistician. 1954. V. 8. № 5. P. 19–21.

57. Lanes S.F. Error and uncertainty in causal inference. In: ‘Causal Inference’. Ed. by K.J. Rothman. Chestnut Hill, MS: Epidemiologic Resources. 1988. P. 173–188.

58. Hill A.B. The environment and disease: association or causation? // Proc. R. Soc. Med. 1965. V. 58. № 5. P. 295–300. https://doi.org/10.1177/0141076814562718

 

 

 PDF (RUS) Full-text article (in Russian)

  

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.11.2023. Accepted for publication: 27.12.2023.

 

 

Medical Radiology and Radiation Safety. 2024. Vol. 69. № 2

DOI:10.33266/1024-6177-2024-69-2-53-64

V. Zaichick1, V. Kolotov2

Nuclear Physics Medical Elementology as a Section of Medical Radiology

1 A.F. Tsyb Medical Radiological Research Centre, Obninsk, Russia

2 V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Contact person: V. Zaichick, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

ABSTRACT

Purpose: Medical elementology and its subsection nuclear physics medical elementology, as the most important areas of biomedical science, are still insufficiently included in the arsenal of medical radiology as a fundamental basis for the development and use of new methods for diagnosing and treating various diseases, including oncological ones. For the successful establishment of nuclear physics medical elementology as a new scientific discipline, it is necessary to develop a clear methodology for its further development. 

Results: The definition of the subject of research and the main postulates of medical elementology is given. The close interrelation of knowledge about the content and metabolism of chemical elements, as well as their radioactive and stable isotopes, with the needs of medical radiology is shown. The following areas of research are considered: 1) The use of chemical elements, as well as their radioactive and stable isotopes in medicine; 2) Visualization of organs and tissues, as well as in vivo determination of the content of chemical elements in them; 3) Nuclear physical methods for determining chemical elements in samples of tissues and fluids of the human body in solving oncological problems; 4) The role of chemical elements in calculating absorbed doses during radiotherapy; 5) The use of nuclear physical methods in the formation of groups at increased risk of cancer. A range of modern nuclear physics analytical methods acceptable in clinical practice and as an adequate research tool is outlined. The need for the integrated use of nuclear physics analytical technologies to obtain reference values ​​for the content of chemical elements in various organs, tissues and fluids of the human body in normal and various pathological conditions, as well as to organize the strictest quality control of measurements and unify methodological approaches is demonstrated. The modern possibilities of using the achievements of nuclear physics medical elementology in solving the problems of medical radiology are determined and the priorities for the future are outlined.

Conclusion: The steady development of nuclear physical methods of chemical elements analysis and their implementation in medicine is constantly expanding the scope of possibilities of medical elementology. The development of this area will certainly make a significant contribution to the future successes of medical radiology.

Keywords: medical radiology, radiation-nuclear medical elementology, chemical elements, norm, pathology, extreme impacts, environment

For citation: Zaichick V, Kolotov V. Nuclear Physics Medical Elementology as a Section of Medical Radiology. Medical Radiology and Radiation Safety. 2024;69(2):53–64. (In Russian). DOI:10.33266/1024-6177-2024-69-2-53-64

 

References

1. Vernadskiy V.I. Living Matter. Moscow, Nauka Publ., 1978. 358 p. (In Russ.).

2. Vernadskiy V.I. Scientific Thought as a Planetary Phenomenon. Moscow, Nongovernmental Ecological Vernadskiy V.I. Foundation, 1997. 265 p. 

3. Vinogradov АP. Proceedings of the Biogeochemical Laboratory of the USSR Academy of Sciences. 1935. No 3. (In Russ.).

4. Voynar A.I. Biological Role of Microelements in the Body of Animals and Humans. Moscow, Vysshaya shkola Publ., 1960. 544 p. (In Russ.).

5. Kovalskiy V.V. Geochemical Ecology. Essays. Moscow, Nauka Publ., 1974. 300 p. (In Russ.).

6. Zaichick V. Medical Elementology as a New Scientific Discipline. J. Radioanal Nucl. Chem. 2006;269:303-309. DOI: https://doi.org/10.1007/s10967-006-0383-3.

7. Zaychik V., Agadzhanyan N.A. Some Methodological Issues of Medical Elementology. Bulletin of Restorative Medicine. 2004;3;9:19-23 (In Russ.).

8. Zaichick V., Ermidou-Pollet S., Pollet S. Bio- and Medical Elementology as a New Scientific Discipline. 1. Fundamental Postulates. Proceedings of 5th International Symposium on Trace Elements in Human: New Perspectives. 13-15 October 2005, Athens, Greece. Athens, Greece, Athens University, 2005. P. 24-30.

9. Zaichick V., Ermidou-Pollet S., Pollet S. Medical Elementology: a New Scientific Discipline. Trace Elements and Electrolytes 2007;24;2:69-74. DOI 10.5414/TEP24069.

10. Avtsin A.P., Zhavoronkov A.A., Rish M.A., Strochkova L.S. Human Microelementoses. Moscow, Meditsina Publ.,1991. 496 c. (In Russ.).

11. Chellan P., Sadler P.J. The Elements of Life and Medicines. Philos. Trans. A Math. Phys. Eng. Sci. 2015;373;2037:20140182. DOI: 10.1098/rsta.2014.018.

12. Zaychik V.E., Pavlov B.D., Tkachev A.V. The Effect of Hyperthermia on the Rate of 131I Excretion from the Thyroid Gland and the Body. Bulletin of Experimental Biology and Medicine. 1974;78;10:51–55 (In Russ.).

13. Zaychick V. Method for Determining the Volume of Extracellular Fluid: Patent. No. 1377739 USSR, 1988 (In Russ.).

14. Zaychick V. X-Ray Fluorescence Analysis of Bromine for the Estimation of Extracellular Water. Appl. Radiat Isot. 1998;49;12:1165–1169. DOI: 10.1016/s0969-8043(97)10118-x.

15. Horta J.S., Abbatt J.D., Motta L.C., Tavares M.H. Leukaemia, Malignancies and Other Late Effects Following Administration of Thorotrast. Zeitschrift für Krebsforschung und Klinische Onkologie. 1972;77;3:202–216. DOI: 10.1007/BF02570686.

16. Gao S.-Y., Zhang X.-Y., Wei W., Li X.-T., Li Y.-L., Xu M., Sun Y.-S., Zhang X.-P. Identification of Benign and Malignant Thyroid Nodules by in Vivo Iodine Concentration Measurement Using Single-Source Dual Energy CT: A Retrospective Diagnostic Accuracy Study. Medicine (Baltimore). 2016;95;39:e4816. DOI: 10.1097/MD.0000000000004816.

17. Binh D.D., Nakajima T., Otake H., Higuchi T., Tsushima Y. Iodine Concentration Calculated by Dual-Energy Computed Tomography (DECT) as a Functional Parameter to Evaluate Thyroid Metabolism in Patients with Hyperthyroidism. BMC Med. Imaging. 2017;17:43. DOI: 10.1186/s12880-017-0216-6.

18. Hansson M., Berg G., Isaksson M. In Vivo x-Ray Fluorescence Analysis (XRF) of the Thyroid Iodine Content Influence of Measurement Geometries on the Iodine Kα Signal. X-Ray Spectrometry. Special Issue: XRS in Medicine. 2008;37;1:37–41. DOI: https://doi.org/10.1002/xrs.991.

19. Kapadia A.J., Sharma A.C., Tourassi G.D., Bender J.E., Howell C.R., Crowell A.S., Kiser M.R., Harrawood B.P., Pedroni R.S., Floyd C.E.Jr. Neutron Stimulated Emission Computed Tomography for Diagnosis of Breast Cancer. IEEE Transactions on Nuclear Science. 2008;55;1:501-509. DOI:10.1109/TNS.2007.909847.

20. Martini N., Koukou V., Michail C., Fountos G. Dual Energy X-ray Methods for the Characterization, Quantification and Imaging of Calcification Minerals and Masses in Breast. Crystals. 2020;10;3:198. DOI:10.3390/cryst1003019.

21. Zaychick V., Vtyurin B.M., Zherbin E.A., Matveyenko E.G. Method for Differential Diagnosis of Thyroid Cancer: Patent No. 619859 USSR, 1978 (In Russ.).

22. Bizer V.A., Zherbin E.A., Zaichick V., Kalashnikov V.M., Proshin V.V. Method for Diagnosing Bone Tumors: Patent No. 677748 USSR, 1979 (In Russ.).

23. Dunchik V.N., Zherbin E.A., Zaychick V., Leonov A.I., Sviridova T.V. Method for Differential Diagnosis of Malignant and Benign Prostate Tumors: Patent No. 764660 USSR,1980
(In Russ.).

24. Tsyb A.F., Zaychick V., Vapnyar V.V., Kalashnikov V.M., Kondrashov A.E. Method for Diagnosing Malignant Tumors: Patent No. 1096775 USSR, 1984 (In Russ.).

25. Zaychick V., Tsyb A.F., Dunchik V.N., Sviridova T.V. Method for Diagnosing Prostate Diseases: Patent No. 997281 USSR, 1982 (In Russ.).

26. Zaychick V., Tsyb A.F., Vtyurin B.M., Medvedev V.S. Method for Diagnosing Latent Thyroid Cancer: Patent. No. 1096776 USSR, 1985 (In Russ.).

27. Zaichick V. Data for the Reference Man: skeleton content of chemical elements. Radiat Environ Biophys. 2013;52;1:65-85. DOI: https://doi.org/10.1007/s00411-012-0448-3.

28. Zaichick V., Wynchank S. Reference Man for Radiological Protection: 71 Chemical Elements’ Content of the Prostate Gland (Normal and Cancerous). Radiat Environ Biophys. 2021;60:165–178. DOI:10.1007/s00411-020-00884-5.

29. Landry G., Reniers B., Murrer L., Lutgens L., Gurp E.B., Pignol J.P., Keller B., Beaulieu L., Verhaegen F. Sensitivity of Low Energy Brachytherapy Monte Carlo Dose Calculations to Uncertainties in Human Tissue Composition. Med. Phys. 2010;37;10:5188-5198. DOI: 10.1118/1.3477161.

30. Boffetta P., Nyberg F. Contribution of Environmental Factors to Cancer Risk. British Medical Bulletin. 2003;68:71–94. DOI: 10.1093/bmp/ldg023.

31. Zaichick V., Ovchjarenko N., Zaichick S. In Vivo Energy Dispersive X-Ray Fluorescence for Measuring the Content of Essential and Toxic Trace Elements in Teeth. Appl. Radiat Isot. 1999;50;2:283-293. DOI: 10.1016/s0969-8043(97)10150-6.

32. International Commission on Radiological Protection No 23. Report of the Task Group on Reference Man. Oxford, Pergamon Press, 1975. https://www.icrp.org/publication.asp?id=ICRP%20Publication%2023.

33. Iyengar G.V., Kollmer W.E., Bowen H.J.M. The Elemental Composition of Human Tissues and Body Fluids. A Compilation of Values for Adults. Weinheim, Werlag Chemie, 1978. 512 p. DOI: https://lib.ugent.be/en/catalog/rug01:000082752.

34. Szpunar J. Advances in Analytical Methodology for Bioinorganic Speciation Analysis: Metallomics, Metalloproteomics and Heteroatom-Tagged Proteomics and Metabolomics. Analyst. 2005;130:442-465. DOI: 10.1039/b418265k. 

 

 

 PDF (RUS) Full-text article (in Russian)

  

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.11.2023. Accepted for publication: 27.12.2023.

 

 

 

 

Medical Radiology and Radiation Safety. 2024. Vol. 69. № 2

DOI:10.33266/1024-6177-2024-69-2-49-52

I.O. Tomashevsky, O.S. Kornikova

The Importance of Radiation Methods 
in the Diagnosis of Coronary Heart Disease in a Specific Patient

Central Clinical Hospital RZD-Medicine, Moscow, Russia

Contact person: I.O. Tomashevsky, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

ABSTRACT

Purpose: Demonstrate a clinical observation in which to establish a diagnosis it was necessary to use eight methods for diagnosing coronary pathology, four of which are radiation.

Material and methods: To establish a diagnosis in a cardiac patient with suspected coronary heart disease (CHD), post-infarction cardiosclerosis, echocardiography (ECG), Holter monitoring (HM), bicycle ergometry (VE), X-ray computed tomography (X-ray computed tomography) to determine calcification of the coronary arteries, single-photon selective computer tomography (SPECT), magnetic resonance computed tomography (MRI), positron emission computed tomography (PET), coronary angiography (CAG).

Results: The sequential use of eight diagnostic methods, four from radiation, was established when observing cardiosclerosis with coronary heart disease, cardiosclerosis in the 4, 5, 10, and 11 segments of the heart, complicated by a left ventricular aneurysm in the lower and lateral walls with minor ischemia at the height of physical activity.  The need to use SPECT/CT in the complex diagnosis of coronary heart disease consists of using hybrid tomography and sequentially performing two studies in one diagnostic procedure (X-ray computed tomography and SPECT with 99m Tc-technetril) it seems possible to obtain 26 study indicators (with X-ray computed tomography – 4 indicators assessing calcification of the coronary arteries, with SPECT – 11 indicators of perfusion and 11 indicators of myocardial function).

Conclusion: A clinical observation of the diagnosis of coronary artery disease with post-infarction cardiosclerosis and left ventricular aneurysm was demonstrated in which eight diagnostic technologies were used (ECG, CM, VE, CT, SPECT, MRI, PET, and CAG), four of which relate to radiation diagnostics (X-ray CT, SPECT, PET, and KAG). A feature of sequential hybrid tomography (X-ray CT and SPECT with 99mTc-technitrile) is that this technology allows you to obtain 26 research indicators.

Keywords: radiation diagnostics, heart, x-ray computed tomography, SPECT/CT, ischemic disease

For citation: Tomashevsky IO, Kornikova OS. The Importance of Radiation Methods in the Diagnosis of Coronary Heart Disease in a Specific Patient. Medical Radiology and Radiation Safety. 2024;69(2):49–52. (In Russian). DOI:10.33266/1024-6177-2024-69-2-49-52

 

References

1. Tomashevskiy I.O., Kornikova O.S. Hybrid Simultaneous ECG-Synchronized Emission and X-Ray Tomography in Assessing the Effect of Coronary Artery Calcinosis on Myocardial Perfusion, as Well as Function, in the Diagnosis of Cardiac Ischemia. Materialy XYII Vserossiyskogo Natsionalnogo Kongressa Luchevykh Diagnostov i Terapevtov «Radiolgiya-2023» = The Collection of Materials of the XYII All-Russian National Congress of Radiation Diagnostics and Therapists “Radiologla-2023”. Moscow Publ., P. 131. ISBN 978-5-906484-71-0 (In Russ.).

2. Khachirova E.A. State of Myocardial Perfusion and Diastolic Function in Patients with Stenocardia and Unchanged Coronary Arteries (According to Hybrid Single-Photon Emission Computed Tomography with 99mTc-MIBI. Thesis PhD Med. Moscow Publ., 2020 (In Russ.). 

3. Ansheles A.A., Sergiyenko V.B. Nuclear Cardiology. Moscow Publ., 2021. P. 75–125 (In Russ.).

 

 

 PDF (RUS) Full-text article (in Russian)

  

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. I.O. Tomashevsky took part in the development of the concept, design, theoretical basis, modification of research methods. O. Kornikova took part in the collection and analysis of literary material, statistical data processing, writing and scientific editing of the text.

Article received: 20.11.2023. Accepted for publication: 27.12.2023.

 

 

Medical Radiology and Radiation Safety. 2024. Vol. 69. № 2

DOI:10.33266/1024-6177-2024-69-2-65-72

S.M. Rodneva1, D.V. Guryev1, 2

Theoretical Analysis of the Radiation Quality and the Relative Biological Efficiency of Tritium

1 A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia

2 N.N. Semenov Federal Research Center for Chemical Physics, Moscow, Russia

Contact person: Sofya Mikhailovna Rodneva, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

CONTENTS

 

Introduction

1. Tritium and reference radiation

1.1 Tritium isotope and its energy spectrum

1.2 Reference radiation

2. Methods for determining the quality of radiation and RBE

2.1 Radiation quality in microdosimetry

2.2 RBE by the number of DNA double-strand breaks

2.3 RBE by fraction of secondary low-energy electrons

3. Analysis of calculations of radiation quality and tritium RBE

3.1 Estimation of tritium emission quality factors

3.2 Evaluation of the RBE of tritium radiation during its action on DNA

3.3 Estimation of the RBE of tritium from the fraction of secondary low-energy electrons

3.4 Quality factors and RBE of tritium with respect to reference emissions

Conclusion


Keywords: ionizing radiation, tritium, electrons, DNA breaks, Monte Carlo simulation, RBE

For citation: Rodneva SM, Guryev DV. Theoretical Analysis of the Radiation Quality and the Relative Biological Efficiency of Tritium. Medical Radiology and Radiation Safety. 2024;69(2):65–72. (In Russian). DOI:10.33266/1024-6177-2024-69-2-65-72

 

References

1. McMahon S.J., Prise K.M. Mechanistic Modelling of Radiation Responses (Review). Cancers. 2019;11:205. DOI: 10.3390/cancers11020205. 

2. Bernal M.A., Bordage M.C., Brown J.M.C., Davfdkova M., Delage E., Bitar Z., et al. Track Structure Modeling in Liquid Water: a Review of the Geant4-DNA Very Low Energy Extension of the Geant4 Monte Carlo Simulation Toolkit. Phys. Med. 2015;31:861–874. DOI:10.1016/j.ejmp.2015.10.087.

3. Kellerer A., Chmelevsky D. Concepts of Microdosimetry II. Probability Distributions of the Microdosimetric Variables. Radiat Environ Biophysics. 1975;12:321–335. DOI: 10.1007/BF01327348. 

4. Famulari G., Pater P., Enger S.A. Microdosimetry Calculations for Monoenergetic Electrons Using Geant4-DNA Combined with a Weighted Track Sampling Algorithm. Phys. Med. Biol. 2017;62:5495–5508. DOI: 10.1088/1361-6560/aa71f6.

5. Chatzipapas K.P., Papadimitroulas P., Emfietzoglou D., Kalospyros S.A., Hada M., Georgakilas A.G., Kagadis G.C. Ionizing Radiation and Complex DNA Damage: Quantifying the Radiobiological Damage Using Monte Carlo Simulations. Cancers. 2020;22:799. DOI: 10.3390/cancers12040799. 

6. Kyriakou I., Sakata D., Tran H.N., Perrot Y., Shin W.G., Lampe N., et al. Review of the Geant4-DNA Simulation Toolkit for Radiobiological Applications at the Cellular and DNA Level. Cancers. 2021;14:35. DOI: 10.3390/cancers14010035. 

7. Goodhead D.T. Biological Effectiveness of Lower-Energy Photons for Cancer Risk. Radiat Protect Dosim. 2018;183:197–202. DOI: 10.1093/rpd/ncy246. 

8. Goodhead D.T. The Relevance of Dose for Low-Energy Beta Emitters. J. Radiol Prot. 2009;29:321–333. DOI: 10.1088/0952-4746/29/3/S01. 

9. Goodhead D.T. Energy Deposition Stochastics and Track Structure: what about the Target? Radiat Protect Dosim. 2006;122:3-15. DOI: 10.1093/rpd/ncl498. 

10. UNSCEAR 2016 Report. Annex C: Biological Effects of Selected Internal Emitters-Tritium. New York, 2016. P. 241_359.

11. Kyriakou I., Tremi I., Georgakilas A.G., Emfietzoglou D. Microdosimetric Investigation of the Radiation Quality of Low-Medium Energy Electrons Using Geant4-DNA. Appl. Radiat Isot. 2021;172:109654. DOI: 10.1016/j.apradiso.2021.109654. 

12. Lai Y., Tsai M.Y., Tian Z., Qin N., Yan C., Hung S., et al. A New Open-Source GPU-Based Microscopic Monte Carlo Simulation Tool for the Calculations of DNA Damages Caused by Ionizing Radiation. Part II: Sensitivity and Uncertainty Analysis. Med. Phys. 2020;47;4:085015. DOI: 10.1002/mp14036. 

13. ICRU 40. The Quality Factor in Radiation Protection. J. Int. Comm. Radiat Units Meas. 1986;21.

14. Kellerer A.M., Hahn К. Considerations on a Revision of the Quality Factor. Radiat Res. 1988;114:480–488. DOI: 10.2307/3577119. 

15. Kellerer A.M., Rossi H.H. The Theory of Dual Radiation Action. Curr. Top. Radiat. Res. 1972:8:85–158.

16. Hawkins R.B. A Microdosimetric-Kinetic Theory of the Dependence of the RBE for Cell Death on LET. Med. Phys. 1998;25:1157–1170. DOI: 10.1118/1.598307. 

17. Nikjoo H., Goodhead D.T. Track Structure Analysis Illustrating the Prominent Role of Low Energy Electrons in Radiobiological Effects of Low-LET Radiations. Phys. Med. Biol. 1991;36:229–238. DOI: 10.1088/0031-9155/36/2/007. 

18. Bellamy M., Eckerman К. Relative Biologieal Effectiveness of Low-Energy Electrons and Photons. Letter Report. Oak Ridge National Laboratory. Washington, U.S. Environmental Protection Agency, 2013. https://www.epa.gov/sites/production/files/2015-05/ documents/epa-rbe-report-1 l-04-2013.pdf. 

19. Olko P. Microdosimetric Modelling of Physical and Biological Detectors. Report No 1914/D. The Henryk Niewodniczanski Institute of Nuclear Physics. Poland, Kraków, 2002. www.ifj.edu.pl/reports/2002.html.

20. Chen J., Nekolla E., Kellerer A.M. A Comparative Study of Microdosimetric Properties of X Rays, γ -Rays, and β-Rays. Radiat Environ Biophys. 1996;35:263-266. DOI: 10.1007/s004110050038.

21. Chen J. Radiation Quality of Tritium: A Comparison with 60Co Gamma Rays. Radiat Prot. Dosim. 2013;56:372–375. DOI:10.1093/rpd/nct068.

22. Morstin K., Kopec M., Olko P., Schmitz T., Feinendeged L.E. Microdosimetry of Tritium. Health Phys. 1993;65;6:648–656. DOI: 10.1097/00004032-199312000-00004.

23. Lund C.M. Microdosimetric Analysis of the Interactions of Mono-Energetic Neutrons with Human Tissue. Degree of Master of Science in Medical Physics. McGill University. Montreal, 2019. https://escholarship.mcgill.ca/concern/theses/8910jz75m.

24. Margis S., Magouni M., Kyriakou I., Georgakilas A.G., Incerti S., Emfietzoglou D. Microdosimetric Calculations of the Direct DNA Damage Induced by Low Energy Electrons Using the Geant4-DNA Monte Carlo Code. Phys. Med. Biol. 2020. DOI: 10.1088/1361-6560/ab6b47. 

25. Matsuya Y., Kai T., Yoshii Y., Yachi Y., Naijo S., Date H., Sato T. Modelling of Yield Estimation for DNA Strand Breaks Based on Monte Carlo Simulations of Electron Track Structure in Liquid Water. Appl. Phys. 2019;126:124701. DOI: 10.1063/1.5115519.

26. Friedland W., Jacob P., Paretzke H.G., Stork T. Monte Carlo Simulation of the Production of Short DNA Fragments by Low-Linear Energy Transfer Radiation Using Higher Order DNA Models. Radial Res. 1998;150:170-182. DOI: 10.2307/3579852. 

27. Friedland W., Jacob P., Paretzke H.G., Merzagora M., Ottolenghi A. Simulation of DNA Fragment Distributions after Irradiation with Photons. Radiat Environ Biophys. 1999;38:39–47. DOI: 10.1007/s004110050136. 

28. Nikjoo H., Lindborg L. RBE of Low Energy Electrons and Photons. Phys. Med. Biol. 2010;55:65–109. DOI: 10.1088/0031-9155/55/10/R01. 

29. Hsiao Y., Stewart R.D. Monte Carlo Simulation of DNA Damage Induction by X-Rays and Selected Radioisotopes. Phys. Med. Biol. 2008;53:233-244. DOI: 10.1088/0031-9155/53/1/016. 

 

 

 PDF (RUS) Full-text article (in Russian)

  

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.11.2023. Accepted for publication: 27.12.2023.

 

 

 

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2760277
Today
Yesterday
This week
Last week
This month
Last month
For all time
642
2366
18661
18409
68020
75709
2760277


Your IP:216.73.216.64