JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Issues journals
Medical Radiology and Radiation Safety. 2025. Vol. 70. № 1
DOI:10.33266/1024-6177-2025-70-1-60-66
I.N. Sachkov
On the Concentration of External Electric Field Intensity
on the Internal Surfaces of Blood Vessels
Ural Federal University, Ekaterinburg, Russia
Contact person: I.N. Sachkov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: To show that connective tissue forming the inner surfaces of blood vessels can act as a concentrator of an external electric field.
Material and methods: Previously, when studying the effects of electromagnetic fields and radiation on the human body, the SAR calculation method and the experimental method of tissue-equivalent phantom dummies were used. Their implementation usually assumed that the absorbing medium is homophase. At the same time, the effects associated with the fact that biological tissue is a mixture of components whose permittivities differ by tens of times, and the particle sizes of the phase components, as a rule, do not exceed one millimeter, were not taken into account. The article presents the results of developing a computer model that allows analyzing the uneven distribution of the electric field in such an object. Computational experiments were performed using the author’s program based on the finite element method.
Results: The structure of tissue containing blood capillaries was simulated by matrix systems containing cylindrical inclusions, the cross-sections of which were characterized by round and rectangular shapes. Computer experiments were conducted to calculate the patterns of spatial distributions of the electric field strength. The values of the permittivity of the matrix and inclusions, the relative sizes and mutual positions of the inclusions were varied. The processes were considered stationary and axisymmetric. It was found that if the external electric field is directed along the axis of the cylindrical capillary, the field strengths inside the capillary and in the surrounding tissue are close to each other. If the external field is directed perpendicular to the capillary axis, a significant (tens of times) concentration of tension occurs in the connective tissue surrounding the capillary. The results obtained can be used to analyze the effects of stationary electromagnetic fields on the human body, as well as electromagnetic waves whose length significantly exceeds the size of blood capillaries. It is noted that the endothelium, which performs a number of important physiological functions, falls into the area of concentration of electric field intensity and heat generation power.
Conclusion: The data obtained indicate that when analyzing the mechanisms of occurrence of pathological changes created by an electric field in living tissue, it is necessary to take into account that the internal surfaces of blood vessels are characterized primarily by an increased risk. Particular attention should be paid to areas in which vessels converge with each other. Further development of specialized computer programs and their implementation in clinical research practice is expected.
Keywords: non-ionizing radiation, multiphase human tissues, blood vessels, electromagnetic field, finite element method, concentration of electric fields, endothelium, computer modeling
For citation: Sachkov IN. On the Concentration of External Electric Field Intensity on the Internal Surfaces of Blood Vessels. Medical Radiology and Radiation Safety. 2025;70(1):60–66. (In Russian). DOI:10.33266/1024-6177-2025-70-1-60-66
References
1. Grigor’yev Yu.G. From Electromagnetic Smog to Electromagnetic Chaos. To Assess the Danger of Mobile Communications for Public Health. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2018;63;3:28-33 (In Russ.). doi: 10.12737/article_5b168a752d92b1.01176625.
2. Grigor’yev Yu.G., Khorseva N.I., Grigor’yev P.E. Thyroid Gland – a New Organ Affected by Electromagnetic Fields of Mobile Communications: Assessment of Possible Consequences for Children and Adolescents. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2021;66;2:67-75 (In Russ.). doi: 10.12737/ 1024-6177-2021-66-2-67-75.
3. Samoylov A.S., Ushakov I.B., Popov V.I., Popova O.A. Analysis of Adaptive and Adaptive Capabilities of Individual Body Systems under the Influence of Electromagnetic Factors of Environmental Risk. Ekologiya Cheloveka = Human Ecology. 2019;5:37-42 (In Russ.). doi: 10.33396/1728-0869-2019-5-31-42.
4. Dovgusha V.V., Tikhonov M.N., Dovgusha L.V. The Influence of Natural and Man-Made Electromagnetic Fields on Life Safety. Ekologiya Cheloveka = Human Ecology. 2009;12:3-9 (In Russ.).
5. Tekutskaia E.E., Vasiliadi R.V. Structural Damage to DNA of Human Peripheral Blood Lymphocytes under the Influence of Physical Factors. Ekologiya Cheloveka = Human Ecology. 2019;5:37-42 (In Russ.). doi: 10.33396/1728-0869-2017-12-9-14.
6. Pinaev S.K. The Role of Heme in Environmentally Induced Oncogenesis (Literature Review). Ekologiya Cheloveka = Human Ecology. 2019;5:37-42 (In Russ.). doi: 10.17816/humeco115234.
7. Zyuzina I.V., Khristoforova N.K. Impact of Ultra-High Frequency Electromagnetic Fields on the Health of Ship Repair Yard Workers. Vestnik Rossiyskogo Universiteta Druzhby Narodov. Seriia Ekologiya i Bezopasnost Zhiznedeyatelnosti = Bulletin of Peoples’ Friendship University of Russia. Series: Ecology and Life Safety. 2009;4:62-67 (In Russ.).
8. Perov S.U., Kudryashov U.B., Rubtsova N.B. Evaluation of the Informativeness of the Theoretical Foundations and Limitations of the Calculated Dosimetry of Radiofrequency Electromagnetic Radiation. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2012;52;2:181-186 (In Russ.).
9. Paltsev U.P., Pokhodzey L.V., Rubtsova N.B., Bogacheva E.V. Problems of Harmonization of Hygienic Regulations of Electromagnetic Fields of Mobile Radio Communication Devices. Gigiena i Sanitariya = Hygiene and Sanitation. 2013;92;3:39-42 (In Russ.).
10. Kvashnin G.M., Kvashnina O.P., Sorokina T.P. Model of Microwave Energy Absorption in Biological Tissues. Vestnik KrasGAU = Bulletin of the Krasnoyarsk State Agronomic University. 2009;2;29:199-203 (In Russ.).
11. Kurushin A.A. Calculation of the Heating Temperature of a Person’s Head when Using a Cell Phone. Zhurnal Radioelektroniki = Journal of Radio Electronics. 2011;4:3-14 (In Russ.).
12. Yargin S.V. Mobile Phones: on the Biological Effects of Radiofrequency Electromagnetic Radiation. Glavnyy Vrach Yuga Rossii = Chief Physician of the South of Russia. 2020;1;71:47-51 (In Russ.).
13. Pavlenko V.I., Lapteva S.N. Study of Water Activated by Ultra-High Frequency Electromagnetic Field. Izvestiya Vysshikh Uchebnykh Zavedeniy. Khimiya i Khimicheskaya Tekhnologiya = News of Universities. Chemistry and Chemical Technology. 2017;60;8:47-52 (In Russ.). doi: 10.6060/tcct.2017608.5552.
14. Bessonova A.P., Stas’ I.E. Influence of High-Frequency Electromagnetic Field on Physical and Chemical Properties of Water and its Spectral Characteristics. Polzunovskiy Vestnik = Polzunovsky Vestnik. 2008;3:305-309 (In Russ.).
15. Fizika Vodnykh Rastvorov = Physics of Aqueous Solutions. Proceedings of the Fifth All-Russian Conference. November 21-23, 2022, Moscow. Moscow Publ., 2022. 100 p. (In Russ.).
16. Sachkov I.N., Chistyakov M.A., Kuanyshev V.T., Shnayder A.V. The Influence of the Synergistic Mechanism of Surface Interdroplet Breakdown on the Risk of Electrical Injuries. Tekhnosfernaya Bezopasnost’ = Technosphere Safety. 2019;2;23:33-41 (In Russ.).
17. Dul`nev G.N., Novikov V.V. Protsessy Perenosa v Neodnorodnykh Sredakh = Transfer Processes in Heterogeneous Media. Leningrad Publ., 1991. 258 p. (In Russ.).
18. Segerlind L. Primeneniye Metoda Konechnykh Elementov = Application of the Finite Element Method. Moscow Publ., 1979. 392 p. (In Russ.).
19. Sachkov I.N. Influence of the Shape of Inclusions on the Conductivity of Two-Dimensional Regular Matrix Systems. Zhurnal Tekhnicheskoy Fiziki = Journal of Technical Physics. 1996;66;12:48–58 (In Russ.).
20. Ivanov A.N., Popykhova E.B., Tereshkina N.E. Vasomotor Function of the Endothelium. Uspekhi Fiziologicheskikh Nauk = Advances in Physiological Sciences. 2020;51;4:82-104. (In Russ.). doi: 10.31857/S0301179820030066.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The author declare no conflict of interest.
Financing. The work was supported by the Russian Science Foundation, grant No. 23-29-00411, ‟Development of computer programs and methods of their application to create new technologies using the effects of concentration of thermodynamic forces in multiphase and heterogeneous materials”.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.10.2024. Accepted for publication: 25.11.2024.
Medical Radiology and Radiation Safety. 2025. Vol. 70. № 1
DOI:10.33266/1024-6177-2025-70-1-67-73
A.V. Vertinskiy1, 2, E.A. Selikhova2, E.S. Sukhikh2, 3, V.V. Velikaya3,
O.V. Gribova3, Zh.A. Starceva3
Modernized Software for Calculation and Optimization
of Absorbed Dose Distribution in a Homogeneous Medium during Radiation Therapy with Fast Neutrons
1Tomsk Regional Oncology Center, Tomsk, Russia
2 National Research Tomsk Polytechnic University, Tomsk, Russia
3Tomsk National Research Medical Center, Tomsk, Russia
Contact person: A.V. Vertinskiy, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: To modernize software for calculation and optimization of isoeffective and absorbed dose distributions in a homogeneous media when planning fast neutron therapy for malignant tumours.
Material and Methods: The updated absorbed dose calculation system was applied to patients with two localisations, breast cancer (BC) and head and neck cancer (HNC). The study included data from 12 patients, of which 7 were patients with primary locally advanced breast cancer and 5 patients with head and neck cancer. In patients with BC, comprehensive treatment was performed. Patients with malignant tumours of the head and neck region underwent neutron and neutron-photon radiation therapy both in terms of combined treatment and as an independent type of treatment. Breast cancer was irradiated in fractionation mode with 4 fractions of 1.6 Gy each. Field docking was used. Patients diagnosed with head and neck cancer were irradiated in the mode of 3 fractions with a single dose of 2.4 Gy with the duration of the full course of treatment of 8 days. Irradiation took place on the therapeutic channel of the U-120 cyclotron located at Tomsk Polytechnic University.
Results: The planning results showed that the dose to the skin in the irradiation zone was 3.190 Gy and 3.143 Gy for beams 1 and 2, respectively. In the tumour centre, the dose was 3.253 Gy (isoeffective dose 7.980 isoGy). For critical sites (heart), the maximum doses ranged from 0.507 Gy to 1.943 Gy. ). The duration of exposure from each beam was 4 minutes and 26 seconds. For five patients with cancer in the head and neck region, planning was performed using 2 fields separated by an angle of 90 degrees (irradiation angles of 45 and 315 degrees). The fractionation regime included: 3 sessions with tumour dose 2.4 Gy, total dose 7.2 Gy per treatment course. The full course of neutron therapy was carried out in 8 days. TDF in the tumour zone was 55.4 units, with the maximum permissible value of 130 units. As a result, the dose to the skin was from 5.8 to 7.5 Gy. The dose to the tumour centre ranged from 7.1 to 7.23 Gy (taking into account RBE = 2.686 isoeffective dose ranged from 37.9 to 38.4 isoGy). Total treatment time per fraction was from 12.3 to 13.5 minutes.
Keywords: radiation therapy, fast neutron, dosimetric planning, modeling of absorbed dose distribution, U-120 cyclotron, breast cancer, head and neck malignant neoplasms
For citation: Vertinskiy AV, Selikhova EA, Sukhikh ES, Velikaya VV, Gribova OV, Starceva ZhA. Modernized Software for Calculation and Optimization of Absorbed Dose Distribution in a Homogeneous Medium during Radiation Therapy with Fast Neutrons. Medical Radiology and Radiation Safety. 2025;70(1):67–73. (In Russian). DOI:10.33266/1024-6177-2025-70-1-67-73
References
1. Sedov V.P., Lisin V.A. Model of VDF for Distant Therapy of Malignant Tumors with Fast Neutrons. Meditsinskaya Radiologiya = Medical Radiology 1988;33;9:9-12 (In Russ.).
2. Lisin V.A. Linear-Quadratic Model in Planning Neutron Therapy at the U-120 Cyclotron. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2018;63;5:41-47 (In Russ.)
3. Lisin V.A. Dosimetric Computer Planning of Gamma-Neutron Therapy of Malignant Tumors Using the U-120 Cyclotron. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 1994;39;5:53-57 (In Russ.).
4. Choynzonov Ye.L., Lisin V.A., Gribova O.V., Novikov V.A., Startseva Zh.A. Neytronnaya Terapiya Zlokachestvennykh Novoobrazovaniy Golovy i Shei = Neutron Therapy of Malignant Neoplasms of the Head and Neck: Monograph. Moscow, Rossiyskaya Akademiya Nauk Publ., 2021. 328 p. (In Russ.).
5. Startseva Zh.A., Gribova O.V., Velikaya V.V., Sukhikh Ye.S., Lisin V.A., Novikov V.A. Remote Neutron Therapy in Tomsk: 40 Years in the Service of Oncology. Sibirskiy Onkologicheskiy Zhurnal = Siberian Oncology Journal. 2024;23;1:98-108.
6. Velikaya V.V., Startseva Zh.A., Gol’dberg V.Ye., Popova N.O. Ten-Year Results of Complex Treatment of Patients with Primary Locally Advanced Breast Cancer. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2023;68;5:71-76.
7. Musabaeva L.I., Startseva Zh.A., Gribova O.V., Velikaya V.V., Lisin V.A. Novel Technologies and Theoretical Models in Radiation Therapy of Cancer Patients Using 6.3 MeV Fast Neutrons Produced BY U-120 Cyclotron. Proceedings of the International Conference on Physics of Cancer: Interdisciplinary Problems and Clinical Applications 2016. 22–25 March 2016. Russia, Tomsk.
8. Musabayeva L.I., Choynzonov Ye.L., Gribova O.V., Startseva ZH.A., Velikaya V.V., Lisin V.A. Neutron Therapy in the Treatment of Radioresistant Malignant Neoplasms. Sibirskiy Onkologicheskiy Zhurnal = Siberian Oncological Journal. 2016;15;3:67-71 (In Russ.).
9. Gribova O.V., Musabayeva L.I., Choynzonov Ye.L., Mukhamedov M.R. Clinical Course of Thyroid Cancer after Combined Treatment with Fast Neutrons in Patients with a High Risk of Recurrence. Vestnik Otorinolaringologii = Bulletin of Otolaryngology. 2012;5:91-92 (In Russ.).
10. Ellis F. Dose. time and fractionation: A clinical hypothesis // Clin. Radiol. 1969. Vol. 20. P. 1‒7.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.10.2024. Accepted for publication: 25.11.2024.
Medical Radiology and Radiation Safety. 2025. Vol. 70. № 1
DOI:10.33266/1024-6177-2025-70-1-81-92
A.K. Smorchkova, A.V. Petraikin, Yu.A. Vasilev
Potential Applications of Artificial Intelligence in Muscle Tissue Assessment by Computed Tomography Images:
a Literature Review
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Moscow, Russia
Contact person: A.K. Smorchkova, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
CONTENTS
Background: Syndromes and diseases in which the qualitative and quantitative composition of the human body change are receiving increasing attention. Sarcopenia is a disease characterized by generalized loss of muscle mass and strength, affecting both able-bodied and elderly populations, with a global prevalence in the general population of up to 10% according to the literature. According to the 2019 European Working Group on Sarcopenia in the Elder People consensus, the gold standard of medical imaging for the assessment of muscle mass loss is computed tomography (CT) and magnetic resonance imaging (MRI). With the increasing use of artificial intelligence (AI) technologies, there is an opportunity to analyze large amounts of medical data, including CT images.
Purpose: To acquaint the general audience with the current work on the medical imaging of significant changes in skeletal muscle tissue from CT images using AI technologies, including highlighting the available options for their clinical and scientific application.
Search and selection methodology: Publications have been searched by advanced search query in bibliographic databases PubMed and eLibrary.ru.
Results: 46 selected original articles published between 2019 and 2024 have been analyzed.
The variants of clinical and scientific application of AI algorithms are reviewed. The main purpose of clinical application is to assess the prognostic value of morphometric indices of sarcopenia for a wide range of diseases – oncological (most of the works) and chronic, as well as for conditions after surgical interventions. The acquisition of additional morphometric indices of not only muscle but also adipose tissue were noted in works where it had been carried out and had clinical significance. The main problem existing at present time is highlighted, which is the lack of a clear place in the clinical diagnostic paradigm. The main option for scientific application is the processing of large amounts of data for population studies. Details of the methodology of CT body composition assessment, including the most commonly used skeletal muscle index thresholds for CT diagnosis of sarcopenia, are given, and the technical aspects of the AI algorithms used were summarised. In conclusion, the high interest of researchers in this topic was noted, and prospects for further research in this area and application in practice were outlined.
Keywords: sarcopenia, computed tomography, artificial intelligence, deep learning, morphometry
For citation: Smorchkova AK, Petraikin AV, Vasilev YuA. Potential Applications of Artificial Intelligence in Muscle Tissue Assessment by Computed Tomography Images: a Literature Review. Medical Radiology and Radiation Safety. 2025;70(1):81–92. (In Russian). DOI:10.33266/1024-6177-2025-70-1-81-92
References
1. Cruz-Jentoft A.J., Bahat G., Bauer J., et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing. 2019;48;1:16-31. doi:10.1093/ageing/afy169
2. Correa-de-Araujo R., Addison O., Miljkovic I., et al. Myosteatosis in the Context of Skeletal Muscle Function Deficit: an Interdisciplinary Workshop at the National Institute on Aging. Front Physiol. 2020;11:963. doi:10.3389/fphys.2020.00963
3. Kelly B.S., Judge C., Bollard S.M., et al. Radiology Artificial Intelligence: a Systematic Review and Evaluation of Methods (Raise). Eur Radiol. 2022;32;11:7998-8007. doi:10.1007/s00330-022-08784-6
4. Lenchik L., Boutin R. Sarcopenia: Beyond Muscle Atrophy and into the New Frontiers of Opportunistic Imaging, Precision Medicine, and Machine Learning. Semin Musculoskelet Radiol. 2018;22;03:307-322. doi:10.1055/s-0038-1641573
5. Graffy P.M., Liu J., Pickhardt P.J., Burns J.E., Yao J., Summers R.M. Deep Learning-Based Muscle Segmentation and Quantification at Abdominal CT: Application to a Longitudinal Adult Screening Cohort for Sarcopenia Assessment. Br J Radiol. 2019;92;1100:20190327. doi:10.1259/bjr.20190327
6. Gillen J., Mills K.A., Dvorak J., et al. Imaging Biomarkers of Adiposity and Sarcopenia as Potential Predictors for Overall Survival among Patients with Endometrial Cancer Treated with Bevacizumab. Gynecol Oncol Rep. 2019;30:100502. doi:10.1016/j.gore.2019.100502
7. Lenchik L., Barnard R., Boutin R.D., et al. Automated Muscle Measurement on Chest CT Predicts All-Cause Mortality in Older Adults From the National Lung Screening Trial. J Gerontol Ser A. 2021;76;2:277-285. doi:10.1093/gerona/glaa141
8. Magudia K., Bridge C.P., Bay C.P., et al. Population-Scale CT-based Body Composition Analysis of a Large Outpatient Population Using Deep Learning to Derive Age-, Sex-, and Race-Specific Reference Curves. Radiology. 2021;298;2:319-329. doi:10.1148/radiol.2020201640
9. Fischer S., Clements S., McWilliam A., et al. Influence of Abiraterone and Enzalutamide on Body Composition in Patients with Metastatic Castration Resistant Prostate Cancer. Cancer Treat Res Commun. 2020;25:100256. doi:10.1016/j.ctarc.2020.100256.
10. Lee J., Kim E.Y., Kim E., et al. Longitudinal Changes in Skeletal Muscle Mass in Patients with Advanced Squamous Cell Lung Cancer. Thorac Cancer. 2021;12;11:1662-1667. doi:10.1111/1759-7714.13958
11. Yoon J.K., Lee S., Kim K.W., et al. Reference Values for Skeletal Muscle Mass at the Third Lumbar Vertebral Level Measured by Computed Tomography in a Healthy Korean Population. Endocrinol Metab. 2021;36;3:672-677. doi:10.3803/EnM.2021.1041
12. Hsu T.M.H., Schawkat K., Berkowitz S.J., et al. Artificial Intelligence to Assess Body Composition on Routine Abdominal CT Scans and Predict Mortality in Pancreatic Cancer – a Recipe for Your Local Application. Eur J Radiol. 2021;142:109834. doi:10.1016/j.ejrad.2021.109834
13. Lee S.A., Jang I.Y., Park S.Y., et al. Benefit of Sarcopenia Screening in Older Patients Undergoing Surgical Aortic Valve Replacement. Ann Thorac Surg. 2022;113;6:2018-2026. doi:10.1016/j.athoracsur.2021.06.067
14. Kong H.H., Kim K.W., Ko Y.S., et al. Longitudinal Changes in Body Composition of Long-Term Survivors of Pancreatic Head Cancer and Factors Affecting the Changes. J Clin Med. 2021;10;15:3436. doi:10.3390/jcm10153436
15. Kim J., Han S.H., Kim H. Detection of Sarcopenic Obesity and Prediction of Long‐Term Survival in Patients with Gastric Cancer Using Preoperative Computed Tomography and Machine Learning. J Surg Oncol. 2021;124;8:1347-1355. doi:10.1002/jso.26668
16. Jullien M., Tessoulin B., Ghesquières H., et al. Deep-Learning Assessed Muscular Hypodensity Independently Predicts Mortality in DLBCL Patients Younger than 60 Years. Cancers. 2021;13;18:4503. doi:10.3390/cancers13184503
17. Han Q., Kim S.I., Yoon S.H., et al. Impact of Computed Tomography-Based, Artificial Intelligence-Driven Volumetric Sarcopenia on Survival Outcomes in Early Cervical Cancer. Front Oncol. 2021;11:741071. doi:10.3389/fonc.2021.741071
18. Ying T., Borrelli P., Edenbrandt L., et al. Automated Artificial Intelligence-Based Analysis of Skeletal Muscle Volume Predicts Overall Survival after Cystectomy for Urinary Bladder Cancer. Eur Radiol Exp. 2021;5;1:50. doi:10.1186/s41747-021-00248-8
19. Laur O., Weaver M.J., Bridge C., et al. Computed Tomography-Based Body Composition Profile as a Screening Tool for Geriatric Frailty Detection. Skeletal Radiol. 2022;51;7:1371-1380. doi:10.1007/s00256-021-03951-0
20. Kim S.I., Chung J.Y., Paik H., et al. Prognostic Role of Computed Tomography-Based, Artificial Intelligence-Driven Waist Skeletal Muscle Volume in Uterine Endometrial Carcinoma. Insights Imaging. 2021;12;1:192. doi:10.1186/s13244-021-01134-y
21. Faron A., Opheys N.S., Nowak S., et al. Deep Learning-Based Body Composition Analysis Predicts Outcome in Melanoma Patients Treated with Immune Checkpoint Inhibitors. Diagnostics. 2021;11;12:2314. doi:10.3390/diagnostics11122314
22. Massaad E., Bridge C.P., Kiapour A., et al. Evaluating Frailty, Mortality, and Complications Associated with Metastatic Spine Tumor Surgery Using Machine Learning–Derived Body Composition Analysis. J Neurosurg Spine. 2022;37;2:263-273. doi:10.3171/2022.1.SPINE211284
23. Somasundaram E., Castiglione J.A., Brady S.L., Trout A.T. Defining Normal Ranges of Skeletal Muscle Area and Skeletal Muscle Index in Children on CT Using an Automated Deep Learning Pipeline: Implications for Sarcopenia Diagnosis. Am J Roentgenol. 2022;219;2:326-336. doi:10.2214/AJR.21.27239
24. Beetz N.L., Geisel D., Shnayien S., et al. Effects of Artificial Intelligence-Derived Body Composition on Kidney Graft and Patient Survival in the Eurotransplant Senior Program. Biomedicines. 2022;10;3:554. doi:10.3390/biomedicines10030554
25. Beetz N.L., Geisel D., Maier C., et al. Influence of Baseline CT Body Composition Parameters on Survival in Patients with Pancreatic Adenocarcinoma. J Clin Med. 2022;11;9:2356. doi:10.3390/jcm11092356
26. Kim D.W., Ahn H., Kim K.W., et al. Prognostic Value of Sarcopenia and Myosteatosis in Patients with Resectable Pancreatic Ductal Adenocarcinoma. Korean J Radiol. 2022;23;11:1055. doi:10.3348/kjr.2022.0277
27. Hosch R., Kattner S., Berger M.M., et al. Biomarkers Extracted by Fully Automated Body Composition Analysis from Chest CT Correlate with SARS-CoV-2 Outcome Severity. Sci Rep. 2022;12;1:16411. doi:10.1038/s41598-022-20419-w
28. Nandakumar B., Baffour F., Abdallah N.H., et al. Sarcopenia Identified by Computed Tomography Imaging Using a deep Learning–Based Segmentation Approach Impacts Survival in Patients with Newly Diagnosed Multiple Myeloma. Cancer. 2023;129;3:385-392. doi:10.1002/cncr.34545
29. Lee J.Y., Kim K.W., Ko Y., et al. Serial Changes in Body Composition and the Association with Disease Activity during Treatment in Patients with Crohn’s Disease. Diagnostics. 2022;12;11:2804. doi:10.3390/diagnostics12112804
30. Keyl J., Hosch R., Berger A., et al. Deep Learning‐Based Assessment of Body Composition and Liver Tumour Burden for Survival Modelling in Advanced Colorectal Cancer. J Cachexia Sarcopenia Muscle. 2023;14;1:545-552. doi:10.1002/jcsm.13158
31. Lee J.H., Choi S.H., Jung K.J., Goo J.M., Yoon S.H. High Visceral Fat Attenuation and Long‐Term Mortality in a Health Check‐Up Population. J Cachexia Sarcopenia Muscle. 2023;14;3:1495-1507. doi:10.1002/jcsm.13226
32. Borrelli A., Pecoraro M., Del Giudice F., et al. Standardization of Body Composition Status in Patients with Advanced Urothelial Tumors: the Role of a CT-Based AI-Powered Software for the Assessment of Sarcopenia and Patient Outcome Correlation. Cancers. 2023;15;11:2968. doi:10.3390/cancers15112968
33. He M., Chen Z.F., Zhang L., et al. Associations of Subcutaneous Fat Area and Systemic Immune-inflammation Index with Survival in Patients with Advanced Gastric Cancer Receiving Dual PD-1 and HER2 Blockade. J Immunother Cancer. 2023;11;6:e007054. doi:10.1136/jitc-2023-007054
34. Park S.J., Yoon J.H., Joo I., Lee J.M. Newly Developed Sarcopenia after Liver Transplantation, Determined by a Fully Automated 3D Muscle Volume Estimation on Abdominal CT, can Predict Post-Transplant Diabetes Mellitus and Poor Survival Outcomes. Cancer Imaging. 2023;23;1:73. doi:10.1186/s40644-023-00593-4
35. Mangana Del Rio T., Sacleux S.C., Vionnet J., et al. Body Composition and Short-Term Mortality in Patients Critically Ill with Acute-on-Chronic Liver Failure. JHEP Rep. 2023;5;8:100758. doi:10.1016/j.jhepr.2023.100758
36. Nowak S., Kloth C., Theis M., et al. Deep Learning–Based Assessment of CT Markers of Sarcopenia and Myosteatosis for Outcome Assessment in Patients with Advanced Pancreatic Cancer after High-Intensity Focused Ultrasound Treatment. Eur Radiol. Published Online August 12, 2023. 2024 Jan;34;1:279-286. doi:10.1007/s00330-023-09974-6
37. Choi S., Yoon S.H., Sung J., Lee J.H. Association Between Fat Depletion and Prognosis of Amyotrophic Lateral Sclerosis: CT ‐Based Body Composition Analysis. Ann Neurol. 2023;94;6:1116-1125. doi:10.1002/ana.26775
38. Kim M., Lee S.M., Son I.T., Park T., Oh B.Y. Prognostic Value of Artificial Intelligence-Driven, Computed Tomography-Based, Volumetric Assessment of the Volume and Density of Muscle in Patients with Colon Cancer. Korean J Radiol. 2023;24;9:849. doi:10.3348/kjr.2023.0109
39. Tonnesen P.E., Mercaldo N.D., Tahir I., et al. Muscle Reference Values From Thoracic and Abdominal CT for Sarcopenia Assessment: the Framingham Heart Study. Invest Radiol. 2024 Mar 1;59;3:259-270. doi:10.1097/RLI.0000000000001012
40. Souza A.C., Rosenthal M.H., Moura F.A., et al. Body Composition, Coronary Microvascular Dysfunction, and Future Risk of Cardiovascular Events Including Heart Failure. Jacc Cardiovasc Imaging. . 2024 Feb;17;2:179-191. doi:10.1016/j.jcmg.2023.07.014
41. Blankemeier L., Yao L., Long J., et al. Skeletal Muscle Area on CT: Determination of an Optimal Height Scaling Power and Testing for Mortality Risk Prediction. Am J Roentgenol. 2024;222;1:e2329889. doi:10.2214/AJR.23.29889
42. Just I.A., Schoenrath F., Roehrich L., et al. Artificial Intelligence‐Based Analysis of Body Composition Predicts Outcome in Patients Receiving Long‐Term Mechanical Circulatory Support. J Cachexia Sarcopenia Muscle. 2024;15;1:270-280. doi:10.1002/jcsm.13402
43. Keyl J., Bucher A., Jungmann F., et al. Prognostic Value of Deep Learning-Derived Body Composition in Advanced Pancreatic Cancer – a Retrospective Multicenter Study. Esmo Open. 2024;9;1:102219. doi:10.1016/j.esmoop.2023.102219
44. Lee M.W., Jeon S.K., Paik W.H., et al. Prognostic Value of Initial and Longitudinal Changes in Body Composition in Metastatic Pancreatic Cancer. J Cachexia Sarcopenia Muscle. 2024;15;2:735-745. doi:10.1002/jcsm.13437
45. Weston A.D., Grossardt B.R., Garner H.W., et al. Abdominal Body Composition Reference Ranges and Association with Chronic Conditions in an Age- and Sex-Stratified Representative Sample of a Geographically Defined American Population. J Gerontol A Biol Sci Med Sci. 2024;79;4:glae055. doi:10.1093/gerona/glae055
46. Suthakaran R., Cao K., Arafat Y., et al. Body Composition Assessment by Artificial Intelligence Can Be a Predictive Tool for Short-Term Postoperative Complications in Hartmann’s Reversals. BMC Surg. 2024;24;1:111. doi:10.1186/s12893-024-02408-0
47. Pekař M., Jiravský O., Novák J., et al. Sarcopenia and Adipose Tissue Evaluation by Artificial Intelligence Predicts the Overall Survival after TAVI. Sci Rep. 2024;14;1:8842. doi:10.1038/s41598-024-59134-z
48. Hanna P.E., Ouyang T., Tahir I., et al. Sarcopenia, Adiposity and Large Discordance between Cystatin C and Creatinine‐Based Estimated Glomerular Filtration Rate in Patients with Cancer. J Cachexia Sarcopenia Muscle. 2024;15;3:1187-1198. doi:10.1002/jcsm.13469
49. Cho S.W., Baek S., Han S., et al. Metabolic Phenotyping with Computed Tomography Deep Learning for Metabolic Syndrome, Osteoporosis and Sarcopenia Predicts Mortality in Adults. J Cachexia Sarcopenia Muscle. 2024 Aug;15;4:1418-1429. doi:10.1002/jcsm.13487
50. Sakamoto K., Hiraoka S. ichiro, Kawamura K., et al. Automated Evaluation of Masseter Muscle Volume: deep Learning Prognostic Approach in Oral Cancer. BMC Cancer. 2024;24;1:128. doi:10.1186/s12885-024-11873-y
51. Shen W., Punyanitya M., Wang Z., et al. Total Body Skeletal Muscle and Adipose Tissue Volumes: Estimation from a Single Abdominal Cross-Sectional Image. J Appl Physiol. 2004;97;6:2333-2338. doi:10.1152/japplphysiol.00744.2004
52. Martin L., Birdsell L., MacDonald N., et al. Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index. J Clin Oncol. 2013;31;12:1539-1547. doi:10.1200/JCO.2012.45.2722
53. Fearon K., Strasser F., Anker S.D., et al. Definition and Classification of Cancer Cachexia: an International Consensus. Lancet Oncol. 2011;12;5:489-495. doi:10.1016/S1470-2045(10)70218-7
54. Prado C.M., Lieffers J.R., McCargar L.J., et al. Prevalence and Clinical Implications of Sarcopenic Obesity in Patients with Solid Tumours of the Respiratory and Gastrointestinal Tracts: a Population-Based Study. Lancet Oncol. 2008;9;7:629-635. doi:10.1016/S1470-2045(08)70153-0
55. Carey E.J., Lai J.C., Wang C.W., et al. A Multicenter Study to Define Sarcopenia in Patients with End-Stage Liver Disease. Liver Transplant off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc. 2017;23;5:625-633. doi:10.1002/lt.24750
56. Jong S.L., Young S.K., Eun Young K., Wook J. Prognostic Significance of CT-Determined Sarcopenia in Patients with Advanced Gastric Cancer | PLOS ONE. 2018 Aug20;13:8:e0202700. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202700
57. Morley J.E., Anker S.D., von Haehling S. Prevalence, Incidence, and Clinical Impact of Sarcopenia: Facts, Numbers, and Epidemiology-Update 2014. J Cachexia Sarcopenia Muscle. 2014;5;4:253-259. doi:10.1007/s13539-014-0161-y
58. Prado C.M.M., Baracos V.E., McCargar L.J., et al. Sarcopenia as a Determinant of Chemotherapy Toxicity and Time to Tumor Progression in Metastatic Breast Cancer Patients Receiving Capecitabine Treatment. Clin Cancer Res off J Am Assoc Cancer Res. 2009;15;8:2920-2926. doi:10.1158/1078-0432.CCR-08-2242
59. Zhuang C.L., Huang D.D., Pang W.Y., et al. Sarcopenia is an Independent Predictor of Severe Postoperative Complications and Long-Term Survival after Radical Gastrectomy for Gastric Cancer: Analysis from a Large-Scale Cohort. Medicine (Baltimore). 2016;95;13:e3164. doi:10.1097/MD.0000000000003164
60. Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Lecture Notes in Computer Science. Springer International Publ., 2015:234-241. doi:10.1007/978-3-319-24574-4_28
61. Trägårdh E, Borrelli P, Kaboteh R, et al. Recomia – a Cloud-Based Platform for Artificial Intelligence Research in Nuclear Medicine and Radiology. EJNMMI Phys. 2020;7:51. doi:10.1186/s40658-020-00316-9
62. Myronenko A. 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization. Published Online 2018 Nov;1:311-320. doi:10.48550/ARXIV.1810.11654
63. Huang G., Liu Z., van der Maaten L., Weinberger K.Q. Densely Connected Convolutional Networks. 2016;1:069-93. Published online January 28, 2018. doi:10.48550/arXiv.1608.06993
64. Yushkevich P.A., Piven J., Hazlett H.C., et al. User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability. NeuroImage. 2006;31;3:1116-1128. doi:10.1016/j.neuroimage.2006.01.015
65. Сморчкова А.К., Петряйкин А.В., Артюкова З.Р. MosMedData: набор диагностических компьютерно-томографических изображений органов брюшной полости на уровне L3 позвонка с сегментацией скелетной мышечной и внутримышечной жировой тканей: Свидетельство о государственной регистрации базы данных №2023624494; Российская Федерация; заявл. 28.11.2023; опубл. 08.12.2023 [Smorchkova A.K., Petryaykin A.V., Artyukova Z.R. MosMedData: Nabor Diagnosticheskikh Komp’yuterno-Tomograficheskikh Izobrazheniy Organov Bryushnoy Polosti na Urovne L3 Pozvonka s Segmentatsiyey Skeletnoy Myshechnoy i Vnutrimyshechnoy Zhirovoy Tkaney = MosMedData: a Set of Diagnostic Computed Tomographic Images of Abdominal Organs at the Level of the L3 Vertebra with Segmentation of Skeletal Muscle and Intramuscular Adipose Tissue. Certificate of State Registration of the Database No. 2023624494. Russian Federation, declared 28.11.2023, published 08.12.2023 (In Russ.)].
66. van Vugt J.L.A., Coebergh van den Braak R.R.J., Schippers H.J.W., et al. Contrast-Enhancement Influences Skeletal Muscle Density, but not Skeletal Muscle Mass, Measurements on Computed Tomography. Clin Nutr Edinb Scotl. 2018;37;5:1707-1714. doi:10.1016/j.clnu.2017.07.007
67. Васильев Ю.А., Владзимирский А.В., Омелянская О.В., Арзамасов К.М., Четвериков С.Ф., Румянцев Д.А., Зеленова М.А. Методология тестирования и мониторинга программного обеспечения на основе технологий искусственного интеллекта для медицинской диагностики // Digital Diagnostics. 2023. Т.4. №3. C. 252-267 [Vasil’yev Yu.A., Vladzimirskiy A.V., Omelyanskaya O.V., Arzamasov K.M., Chetverikov S.F., Rumyantsev D.A., Zelenova M.A. Methodology of Testing and Monitoring Software Based on Artificial Intelligence Technologies for Medical Diagnostics. Digital Diagnostics. 2023;4;3:252-267 (In Russ.)]. doi: 10.17816/DD321971
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. This work was prepared by the authors within the framework of R&D «Development and creation of a hardware and software complex for opportunistic screening of osteoporosis» (EGISU No.: 123031400007-7) in accordance with the order of the Department of Health of the City of Moscow dated 12/21/2022 No. 1196 «On approval of state tasks, financial support of which is carried out at the expense of the budget of the city of Moscow to state budgetary (autonomous) institutions subordinated to the Department of Health of the City of Moscow, for 2023 and the planning period 2024 and 2025.»
Contribution. Article was prepared with equal participation of the authors.
Article received: 20.10.2024. Accepted for publication: 25.11.2024.
Medical Radiology and Radiation Safety. 2025. Vol. 70. № 1
DOI:10.33266/1024-6177-2025-70-1-74-80
Y.A. Vasilev, D.S. Kontorovich, R.V. Reshetnikov, I.A. Blokhin, D.S. Semenov
Priority Imaging Technique in Patients with Head
and Neck Cancer and Dental Hardware: a Literature Review
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Moscow, Russia
Contact person: D.S. Kontorovich, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: To systematize the data on the possibilities of head and neck cancer visualization in patients with dental metal constructions using radial diagnostic methods and to choose the most informative one.
Material and methods: We searched for scientific publications in the information and analytical system PubMed up to 2024 inclusive by keywords: metal artifact, head and neck neoplasms, oropharyngeal cancer. A total of 26 articles were analyzed. When choosing the localization of masses, the exclusion criteria were the possibility of using the method and the probable presence of metal structures in the scanning area. The choice of localization was based on the data on the average age of patients with first-diagnosed head and neck neoplasms and extended mainly to the anatomical areas that are most susceptible to artifacts from dental metal structures: the nasopharynx, tongue, and soft tissues of the floor of the mouth.
Results: Studying of the materials allowed to systematize modern data on the possibilities of radial diagnostics in visualization of head and neck tumors in patients with metal structures in the oral cavity and to conclude that the methods of choice in this pathology are PET-CT and MRI with CT, their numerical indices in tumor detection are 89 % for PET-CT and 84% for MRI with CT, respectively. If it is impossible to perform the above methods, it is worth to perform additional examination with the help of additional methods: SCT plus SII, MAR*, dual-energy CT (DECT).
Conclusion: We have performed a comparative analysis in this review of the methods of radial diagnostics that are used to suppress metallic artifacts in patients with TNF OGSS and the most preferable ones are indicated when choosing a scanning method. Thus, the competent choice and consistent application of various methods of radial diagnostics taking into account their capabilities and limitations is a key factor for accurate preoperative assessment of head and neck masses in the presence of artifacts from dental structures in patients.
Keywords: head and neck cancer, dental hardware, CT, MRI, PET/CT, image artifacts
For citation: Vasilev YA, Kontorovich DS, Reshetnikov RV, Blokhin IA, Semenov DS. Priority Imaging Technique in Patients with Head and Neck Cancer and Dental Hardware: a Literature Review. Medical Radiology and Radiation Safety. 2025;70(1):74–80. (In Russian). DOI:10.33266/1024-6177-2025-70-1-74-80
References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clinicians. 2018;68(6):394-424. doi:10.3322/caac.21492
2. Zlokachestvennye novoobrazovaniya v Rossii v 2020 godu: (zabolevaemost’ i smertnost’) / pod redakciej A.D. Kaprina, V.V. Starinskogo, A.O. Shahzadavoj – M.: MNIOI im. P.A. Gercena – filial FGBU \”NMIC radiologii\” Minzdrava Rossii, – 2021. – 252 s
3. Li L, Sun J, Li B, et al. Computed tomography versus magnetic resonance imaging for diagnosing cervical lymph node metastasis of head and neck cancer: a systematic review and meta-analysis. OTT. June 2015:1291. doi:10.2147/OTT.S73924
4. Arya S, Rane P, Deshmukh A. Oral cavity squamous cell carcinoma: Role of pretreatment imaging and its influence on management. Clinical Radiology. 2014;69(9):916-930. doi:10.1016/j.crad.2014.04.013
5. Alfouzan AF. Radiation therapy in head and neck cancer. SMJ. 2021;42(3):247-254. doi:10.15537/smj.2021.42.3.20210660
6. Hauck KE, Trentin MS, Skiba THI, Shibli JA, De Carli JP. Clinical and satisfaction outcomes of using one or two dental implants for mandibular overdentures: preliminary short-term follow-up of a randomized clinical trial. Int J Implant Dent. 2021;7(1):10. doi:10.1186/s40729-020-00286-8
7. 7. Kubo Y, Ito K, Sone M, et al. Diagnostic value of model-based iterative reconstruction combined with a metal artifact reduction algorithm during ct of the oral cavity. AJNR Am J Neuroradiol. 2020;41(11):2132-2138. doi:10.3174/ajnr.A6767
8. Artefakty ot metallokonstrukcij v magnitno-rezonansnoj tomografii: metodicheskie rekomendacii / Yu.A. Vasil’ev, D.S. Semenov, O.Yu. Panina [i dr.] // Seriya «Luchshie praktiki luchevoj i instrumental’noj diagnostiki». – Vyp. 83. – M. : GBUZ «NPKC DiT DZM», 2022. –
40 s.
9. Khodarahmi I, Isaac A, Fishman EK, Dalili D, Fritz J. Metal about the hip and artifact reduction techniques: from basic concepts to advanced imaging. Semin Musculoskelet Radiol. 2019;23(03):e68-e81. doi:10.1055/s-0039-1687898
10. Kamila N. K. (ed.). Handbook of research on emerging perspectives in intelligent pattern recognition, analysis, and image processing. – 2015.
11. Yudin A.L., Shсhetinin R.A., Afanas’eva N.I. Cancer of the tongue and floor of the mouth: Current aspects of diagnosis. Journal of radiology and nuclear medicine. 2015;(5):42-48. (In Russ.) https://doi.org/10.20862/0042-4676-2015-0-5-84-89
12. Hiyama T, Kuno H, Sekiya K, Tsushima S, Oda S, Kobayashi T. Subtraction iodine imaging with area detector CT to improve tumor delineation and measurability of tumor size and depth of invasion in tongue squamous cell carcinoma. Jpn J Radiol. 2022;40(2):167-176. doi:10.1007/s11604-021-01196-4
13. Hirata K, Utsunomiya D, Oda S, et al. Added value of a single-energy projection-based metal-artifact reduction algorithm for the computed tomography evaluation of oral cavity cancers. Jpn J Radiol. 2015;33(10):650-656. doi:10.1007/s11604-015-0471-9
14. Hong HR, Jin S, Koo HJ, et al. Clinical values of 18 F‐FDG PET/CT in oral cavity cancer with dental artifacts on CT or MRI. Journal of Surgical Oncology. 2014;110(6):696-701. doi:10.1002/jso.23691
15. Mesia R, Iglesias L, Lambea J, et al. SEOM clinical guidelines for the treatment of head and neck cancer (2020). Clin Transl Oncol. 2021;23(5):913-921. doi:10.1007/s12094-020-02533-1
16. Castelijns JA, Van Den Brekel MWM, Hermans R. Imaging of the larynx. Seminars in Roentgenology. 2000;35(1):31-41. doi:10.1016/S0037-198X(00)80030-9
17. Verduijn GM, Bartels LW, Raaijmakers CPJ, Terhaard CHJ, Pameijer FA, Van Den Berg CAT. Magnetic resonance imaging protocol optimization for delineation of gross tumor volume in hypopharyngeal and laryngeal tumors. International Journal of Radiation Oncology*Biology*Physics. 2009;74(2):630-636. doi:10.1016/j.ijrobp.2009.01.014
18. Sergunova K.A., Akhmad E.S., Petryaykin A.V., Kivasev S.A., Semenov D.S., Vasil’ev Yu.A., Morozov S.P., Vladzimirskiy A.V., Nizovtsova L.A. Magnetic resonance safety for patients with implanted medical devices. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2019; 20 (4): 313–23 (in Russ.). DOI: 10.24022/ 1810-0694-2019-20-4-313-323
19. Kaprin A. D. Klinicheskie rekomendacii. Rak nosoglotki. – 2020.
20. Kaprin A. D. Klinicheskie rekomendacii. Zlokachestvennye novoobrazovaniya polosti rta – 2020.
21. Kaprin A. D. Klinicheskie rekomendacii. Rak rotoglotki. – 2024.
22. Petrovichev VS, Neklyudova MV, Sinitsyn VE, Nikitin IG. Dual-energy computed tomography for head and neck cancer. Digital Diagnostics. 2021;2(3):343-355. doi:10.17816/DD62572
23. Toepker M, Czerny C, Ringl H, et al. Can dual-energy CT improve the assessment of tumor margins in oral cancer? Oral Oncology. 2014;50(3):221-227. doi:10.1016/j.oraloncology.2013.12.001
24. Parakh A, Lennartz S, An C, et al. Dual-energy ct images: pearls and pitfalls. RadioGraphics. 2021;41(1):98-119. doi:10.1148/rg.2021200102
25. Bayer N, May MS, Wuest W, et al. Iterative metal artifact reduction in head and neck ct facilitates tumor visualization of oral and oropharyngeal cancer obscured by artifacts from dental hardware. Academic Radiology. 2023;30(12):2962-2972. doi:10.1016/j.acra.2023.04.007
26. Utility model No. 190308 U1 the Russian Federation, IPC A61B 6/02. Ustrojstvo fantoma dlya ocenki effektivnosti algoritmov i metodov podavleniya artefaktov ot metallokonstrukcij pri provedenii komp’yuternoj tomografii [Phantom design for assessing the effectiveness of algorithms and methods for suppressing metal artifacts in computed tomography] : No. 2019105941 : submitted 04.03.2019 : published 25.06.2019 / K.A. Sergunova, A.V. Petraikin, D.S. Semenov [et al.] ; submitter Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department.
27. Sergunova K. A. i dr. Osnovy bezopasnosti pri provedenii magnitno-rezonansnoj tomografii //Metodicheskie rekomendacii. – 2019. –
№. 63.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. This paper was prepared by a group of authors as a part of the research and development effort titled “Scientific evidence for using radiomics-guided medical imaging to diagnose cancer”, (USIS No. 123031500005-2) in accordance with the Order No. 1196 dated December 21, 2022 “On approval of state assignments funded by means of allocations from the budget of the city of Moscow to the state budgetary (autonomous) institutions subordinate to the Moscow Health Care Department, for 2023 and the planned period of 2024 and 2025” issued by the Moscow Health Care Department.
Contribution. All authors confirm that their authorship meets the international ICMJE criteria (all authors have made a significant contribution to the development of the concept, research and preparation of the article, read and approved the final version before publication). D.S. Kontorovich – literature review, collection and analysis of literary sources, writing the text. R.V. Reshetnikov, I.A. Blokhin – collection and analysis of literary sources and editing the article.
Article received: 20.10.2024. Accepted for publication: 25.11.2024.
Medical Radiology and Radiation Safety. 2025. Vol. 70. № 1
DOI:10.33266/1024-6177-2025-70-1-93-101
V.K. Tishchenko1, O.P. Vlasova1, 2, S.A. Ivanov1,3, A.D. Kaprin2, 3, 4
Radiopharmaceuticals Based on Somatostatin Analogs and Technetium-99m Radionuclide for Diagnosis of Neuroendocrine Tumors: a Literature Review
1 A.F. Tsyb Medical Radiological Research Center – branch of the National Medical Research Radiological Centre, Obninsk, Russia
2 National Medical Research Radiological Center, Moscow, Russia
3 Рeoples Friendship University of Russia, Moscow, Russia
4 P.A. Hertsen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Center, Moscow, Russia
Contact person: Viktoriia Konstantinovna Tishchenko, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
CONTENTS
Introduction
Somatostatin receptor imaging capabilities
Radiopharmaceuticals based on somatostatin receptors agonists and technetium-99m
Radiopharmaceuticals based on somatostatin receptors antagonists and technetium-99m
Conclusion
Keywords: radiopharmaceuticals, technetium-99m, somatostatin analogs, radionuclide diagnosis, neuroendocrine tumors
For citation: Tishchenko VK, Vlasova OP, Ivanov SA, Kaprin AD. Radiopharmaceuticals Based on Somatostatin Analogs and Technetium-99m Radionuclide for Diagnosis of Neuroendocrine Tumors: a Literature Review. Medical Radiology and Radiation Safety. 2025;70(1):93–101. (In Russian). DOI:10.33266/1024-6177-2025-70-1-93-101
References
1. Панкратова Е.А., Шпрах З.С. Рецепторы к соматостатину: локализация и методы визуализации (обзор литературы) // Российский биотерапевтический журнал. 2022. Т. 21. №1. С. 10–20. [Pankratova Ye.A., Shprakh Z.S. Somatostatin Receptors: Localization and Imagining Methods (Review). Rossiyskiy Bioterapevticheskiy Zhurnal = Russian Journal of Biotherapy. 2022;21;1:10-20 (In Russ.)]. DOI: 10.17650/1726-9784- 2022-21-1-10-20.
2. Milewska-Kranc A., Cwikla J.B., Kolasinska-Cwikla A. The Role of Receptor-Ligand Interaction in Somatostatin Signaling Pathways: Implications for Neuroendocrine Tumors. Cancers (Basel). 2023;16;1:116. doi: 10.3390/cancers16010116.
3. Nock BA., Kanellopoulos P., Joosten L., Mansi R., Maina T. Peptide Radioligands in Cancer Theranostics: Agonists and Antagonists. Pharmaceuticals (Basel). 2023;16;5:674. doi: 10.3390/ph16050674.
4. Levine R., Krenning E.P. Clinical History of the Theranostic Radionuclide Approach to Neuroendocrine Tumors and other Types of Cancer: Historical Review Based on an Interview of Eric P. Krenning by Rachel Levine. J. Nucl. Med. 2017;58;S2:3S-9S. doi: 10.2967/jnumed.116.186502.
5. Krenning E.P., Kwekkeboom D.J., Bakker W.H., Breeman W.A., Kooij P.P., Oei H.Y., van Hagen M., Postema P.T., de Jong M., Reubi J.C., Visser T.J., Reijs A.E.M., Hofland L.J., Koper J.W., Lamberts S.W.J. Somatostatin Receptor Scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-Octreotide: the Rotterdam Experience with more than 1000 Patients. Eur J Nucl Med. 1993;20;8:716–731. doi: 10.2967/jnumed.116.186502.
6. Слащук К.Ю., Румянцев П.О., Дегтярев М.В., Серженко С.С., Баранова О.Д., Трухин А.А., Сирота Я.И. Молекулярная визуализация нейроэндокринных опухолей при соматостатин-рецепторной сцинтиграфии (ОФЭКТ/КТ) с 99mTc-тектротидом // Медицинская радиология и радиационная безопасность. 2020. Т.65. №2. С. 44-49. [Slashchuk K.Yu., Rumyantsev P.O., Degtyarev M.V., Serzhenko S.S., Baranova O.D., Trukhin A.A., Sirota Ya.I. Molecular Imaging of Neuroendocrine Tumors by Somatostatin-Receptor Scintigraphy (SPECT/CT) with 99mTc-Tektrotyd. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2020;65;2:44-9 (In Russ.)]. DOI: 10.12737/1024-6177-2020-65-2-44-49.
7. Рабинович Э.З., Савченко А.Ю., Сухов В.Ю., Перелыгин В.В. Аспекты проблемы проведении клинических исследований современных таргетных радиофармацевтических препаратов // Формулы Фармации. 2022. № 4(3). С. 27-42. [Rabinovich E.Z., Savchenko A.Yu., Sukhov V.Yu., Perelygin V.V. Aspects of the Problem of Clinical Trials of Modern Targeted Radiopharmaceuticals. Formuly Farmatsii = Pharmacy Formulas. 2022;4;3;27-42 (In Russ.)]. DOI: 10.17816/phf239422.
8. Boschi A., Uccelli L., Martini P. A Picture of Modern Tc-99m Radiopharmaceuticals: Production, Chemistry, and Applications in Molecular Imaging. Appl Sci. 2019;9;12:2526. https://doi.org/10.3390/app9122526.
9. Shi J., Liu S. Clinical Application of 99mTc-Labeled Peptides for Tumor Imaging: Current Status and Future Directions. iRADIOLOGY. 2024;2;1:17-34. DOI: 10.1002/ird3.55.
10. Eychenne R., Bouvry C., Bourgeois M., Loyer P., Benoist E., Lepareur N. Overview of Radiolabeled Somatostatin Analogs for Cancer Imaging and Therapy. Molecules. 2020;25:4012. doi: 10.3390/molecules25174012.
11. Makris G., Kuchuk M., Gallazzi F., Jurisson S.S., Smith C.J., Hennkens H.M. Somatostatin Receptor Targeting with Hydrophilic [99mTc/186Re]Tc/Re-tricarbonyl Nodaga and Nota Complexes. Nucl Med Biol. 2019;71:39-46. https://doi.org/10.1016/j.nucmedbio.2019.04.004.
12. Ларькина М.С., Подрезова Е.В., Брагина О.Д., Тагирова Е.А., Чернов В.И., Юсубов М.С., Нестеров Е.А., Скуридин В.С., Кривощеков С.В., Яновская Е.А., Гурто Р.В., Белоусов М.В. Разработка способа получения производного октреотида для диагностики нейроэндокринных опухолей // Бюллетень сибирской медицины. 2019. Т. 18. №3. С. 72-80. https://doi.org: 10.20538/1682-0363-2019-3-72–80. [Lar’kina M.S., Podrezova Ye.V., Bragina O.D., Tagirova Ye.A., Chernov V.I., Yusubov M.S., Nesterov Ye.A., Skuridin V.S., Krivoshchekov S.V., Yanovskaya Ye.A., Gurto R.V., Belousov M.V. Development of a Method for Preparing Octreotide Derivative for Diagnosis of Neuroendocrine Tumors. Byulleten’ Sibirskoy Meditsiny = Bulletin of Siberian Medicine. 2019;18;3:72-80 (In Russ.)]. https://doi.org/10.20538/1682-0363-2019-3-72-80.
13. Reubi J.C., Schar J.C., Waser B., Wenger S., Heppeler A., Schmitt J.S., Mäcke H.R. Affinity Profiles for Human Somatostatin Receptor Subtypes SST1–SST5 for Somatostatin Radiotracers Selected for Scintigraphic and Radiotherapeutic Use. Eur J Nucl Med. 2000;27;3:273-82. doi: 10.1007/s002590050034.
14. Virgolini I., Leimer M., Handmaker H., Lastoria S., Bischof C., Muto P., Pangerl T., Gludovacz D., Peck-Radosavljevic M., Lister-James J., Hamilton G., Kaserer K., Valent P., Dean R. Somatostatin Receptor Subtype Specificity and in Vivo Binding of a Novel Tumor Tracer, 99mTc-P829. Cancer Res. 1998;58;9:1850-1859.
15. URL: https://www.rxlist.com/neotect-drug.htm#description. (accessed 15 August 2024).
16. Lebtahi R., Le Cloirec J., Houzard C., Daou D., Sobhani I., Sassolas G., Mignon M., Bourguet P., Le Guludec D. Detection of Neuroendocrine Tumors: 99mTc-P829 Scintigraphy Compared with 111In-Pentetreotide Scintigraphy. J Nucl Med. 2002;43;7:889-895.
17. Maina T., Nock B., Nikolopoulou A., Sotiriou P., Loudos G., Maintas D., Cordopatis P., Chiotellis E. [99mTc] Demotate, a New 99mTc-Based [Tyr3] Octreotate Analogue for the Detection of Somatostatin Receptor-Positive Tumours: Synthesis and Preclinical Results. Eur J Nucl Med Mol Imag. 2002;29;6:742-53. doi: 10.1007/s00259-002-0782-9.
18. Decristoforo C., Maina T., Nock B., Gabriel M., Cordopatis P., Moncayo R. 99mTc-Demotate 1: First Data in Tumour Patients-Results of a Pilot/Phase I Study. Eur J Nucl Med Mol Imaging. 2003;30;9:1211-1219. doi: 10.1007/s00259-003-1225-y.
19. Maina T., Nock B.A., Cordopatis P., Bernard B.F., Breeman W.A.P, van Gameren A., van der Berg R., Reubi J.C., Krenning E.P., de Jong M. [99mTc] Demotate 2 in the Detection of Sst(2)-Positive Tumours: a Preclinical Comparison with [111In]DOTA-tate. Eur J Nucl Med Mol Imaging 2006;33(7):831-840. doi: 10.1007/s00259-006-0068-8.
20. Kaihani S., Sadeghzadeh N. Study of the 99mTc-Labeling Conditions of 6-Hydrazinonicotinamide-Conjugated Peptides from a new Perspective: Introduction to the Term Radio-Stoichiometry. J Labelled Comp Radiopharm. 2020;63;14:582-596. https://doi.org/10.1002/jlcr.3883.
21. Meszaros L., Dose A., Biagini S.C.G., Blower P. Hydrazinonicotinic Acid (HYNIC) – Coordination Chemistry and Applications in Radiopharmaceutical Chemistry. Inorg Chim Acta. 2020;363;6:1059-1069. https://doi.org/10.1016/j.ica.2010.01.009.
22. Decristoforo C., Melendez-Alafort L., Sosabowski J.K., Mather S.J. 99mTc-HYNIC-[Tyr3]-Octreotide for Imaging Somatostatin-Receptor-Positive Tumors: Preclinical Evaluation and Comparison with 111In-Octreotide. J Nucl Med. 2000;41;6:1114-1119.
23. URL: https://mdcr.ru/tektrotyd (accessed 16 July 2024).
24. Garai I., Barna S., Nagy G., Forgacs A. Limitations and Pitfalls of 99mTc-EDDA/HYNIC-TOC (Tektrotyd) Scintigraphy. Nucl Med Rev Cent East Eur. 2016;19;2:93-98. doi: 10.5603/NMR.2016.0019.
25. Trogrlic M., Tezak S. 99mTc-EDDA/HYNIC-TOC in Management of Patients with Head and Neck Somatostatin Receptor Positive Tumors. Nucl Med Rev Cent East Eur. 2016;19;2:74-80. doi: 10.5603/NMR.2016.0016.
26. Briganti V., Cuccurullo V., Berti V., Di Stasio G.D., Linguanti F., Mungai F., Mansi L. 99mTc-EDDA/HYNIC-TOC is a New Opportunity in Neuroendocrine Tumors of the Lung (and in other Malignant and Benign Pulmonary Diseases). Curr Radiopharm. 2020;13;3:166-176. doi: 10.2174/1874471013666191230143610.
27. Artiko V., Afgan A., Petrović J., Radović B., Petrović N., Vlajković M., Šobić-Šaranović D., Obradović V. Evaluation of Neuroendocrine Tumors with 99mTc-EDDA/HYNIC TOC. Nucl Med Rev Cent East Eur. 2016;19;2:99-103. doi: 10.5603/NMR.2016.0020.
28. Sergieva S., Robev B., Dimcheva M., Fakirova A., Hristoskova R. Clinical Application of SPECT-CT with 99mTc-Tektrotyd in Bronchial and Thymic Neuroendocrine Tumors (NETs). Nucl Med Rev Cent East Eur. 2016;19;2:81-7. doi: 10.5603/NMR.2016.0017.
29. Boutsikou E., Porpodis K., Chatzipavlidou V., Hardavella G., Gerasimou G., Domvri K., Papadopoulos N., Avramidou V., Spyratos D., Kontakiotis T., Zarogoulidis K. Predictive Value of 99mTc-hynic-toc Scintigraphy in Lung Neuroendocrine Tumor Diagnosis. Technol. Cancer Res. Treat. 2019;18:15330338119842586. doi: 10.1177/1533033819842586.
30. Gherghe M., Lazăr A.M., Stanciu A.E., Mutuleanu M.D., Sterea M.C., Petroiu C., Gale LN. The New Radiolabeled Peptide 99mTcEDDA/HYNIC-TOC: Is It a Feasible Choice for Diagnosing Gastroenteropancreatic NETs? Cancers (Basel). 2022;14;11:2725. doi: 10.3390/cancers14112725.
31. Юкина М.Ю., Трошина Е.А., Нуралиева Н.Ф., Дегтярев М.В., Мокрышева Н.Г. ОФЭКТ/КТ с 99mTc-Тектротидом в диагностике инсулиномы // Ожирение и метаболизм. 2023. Т.20. №1. С. 43-48. [Yukina M.Yu., Troshina Ye.A., Nuralieva N.F., Degtyarev M.V., Mokrysheva N.G. SPECT/CT with 99mTc-Tectrotide in the Diagnosis of Insulinoma. Ozhireniye i Metabolism = Obesity and metabolism. 2023;20(1):43-48. (In Russ.)]. https://doi.org/10.14341/omet12977.
32. Moriguchi-Jeckel C.M., Madke R.R., Radaelli G., Viana A., Nabinger P., Fernandes B., Gössling G., Berdichevski E.H., Vilas E., Giacomazi J., Rocha M.S., Borges J.A., Hoffmann E., Greggio S., Venturin G.T., Barris C.H., Zaffaroni F., Werutsky G., da Costa J.C. Clinical Validation and Diagnostic Accuracy of 99mTc-EDDA/HYNIC-TOC Compared to 111In-DTPA-octreotide in Patients with Neuroendocrine Tumours: the LACOG 0214 study. Ecancermedicalscience. 2023;17:1582. doi: 10.3332/ecancer.2023.1582.
33. Liepe K., Becker A. 99mTc-Hynic-TOC Imaging in the Diagnostic of Neuroendocrine Tumors. World J Nucl Med. 2018;17;3:151-156. doi: 10.4103/wjnm.WJNM_41_17.
34. Chen L., Li F., Zhuang H., Jing H., Du Y., Zeng Z. 99mTc-HYNIC-TOC Scintigraphy Is Superior to 131I-MIBG Imaging in the Evaluation of Extraadrenal Pheochromocytoma. J Nucl Med. 2009;50:397-400. doi: 10.2967/jnumed.108.058693.
35. Hubalewska-Dydejczyk A., Fröss-Baron K., Mikołajczak R., Maecke H.R., Huszno B., Pach D., Sowa-Staszczak A., Janota B., Szybiński P., Kulig J. 99mTc EDDA/HYNIC Octreotate Scintigraphy, an Efficient Method for the Detection and Staging of Carcinoid Tumors: Results of 3 years’ Experience. Eur J Nucl Med Mol Imaging. 2006;33;10:1123-1133. doi: 10.1007/s00259-006-0113-7.
36. Sager S., Kabasakal L., Halac M., Maecke H., Uslu L., Önsel Ç., Kanmaz B. Comparison of 99mTc-HYNIC-TOC and HYNIC-TATE Octreotide Scintigraphy with FDG PET and 99mTc-MIBI in Local Recurrent or Distant Metastatic Thyroid Cancers. Clin Nucl Med. 2013;38;5:321-5. doi: 10.1097/RLU.0b013e3182868062.
37. Deveci E.K., Ocak M., Bozkurt M.F., Türker S., Kabaskal L., Ugur O. The Diagnostic Efficiency of 99mTc-EDDA/HYNIC-Octreotate SPECT-CT in Comparison with 111In-Pentetrotide in the Detection of Neuroendocrine Tumours. Mol Imaging Radionucl Ther. 2013;22;3:76-84. doi: 10.4274/Mirt.68552.
38. Korde A., Mallia M., Shinto A., Sarma H.D., Samuel G., Banerjee S. Improved Kit Formulation for Preparation of 99mTc-HYNIC-TOC: Results of Preliminary Clinical Evaluation in Imaging Patients with Neuroendocrine Tumors. Cancer Biother Radiopharm. 2014;29;9:387-94. doi: 10.1089/cbr.2014.1657.
39. Mukherjee A., Korde A., Shinto A., Sarma H.D., Kamaleswaran K., Dash A. Studies on Batch Formulation of a Freeze Dried Kit for the Preparation of 99mTc-HYNIC-TATE for Imaging Neuroendocrine Tumors. Appl Radiat Isot. 2019;145:180-186. doi: 10.1016/j.apradiso.2018.12.027.
40. Behera A., Banerjee I., De K., Chattopadhyay S., Misra M. Synthesis, Radiolabelling and Biological Evaluation of new Somatostatin Receptor Positive Tumour Imaging Agent. Amino Acids. 2011. DOI 10.1007/s00726-012-1423-7.
41. De K., Bhowmik A., Behera A., Banerjee I., Ghosh M.K., Misra M. Synthesis, Radiolabeling, and Preclinical Evaluation of a new Octreotide Analog for Somatostatin Receptor-Positive Tumor Scintigraphy. J Pept Sci. 2012;18:720. https://doi.org/10.1002/psc.2458.
42. Gandomkar M., Najafi R., Shafiei M., Mazidi M., Ebrahimi S.E.S. Preclinical Evaluation of [99mTc/EDDA/tricine/HYNIC0, 1-Nal3, Thr8]-Octreotide as a New Analogue in the Detection of Somatostatin-Receptor-Positive Tumors. Nucl Med Biol. 2007;34;6:651-657. doi: 10.1016/j.nucmedbio.2007.06.006.
43. Nikolopoulou A., Nock B.A., Maina T. 99mTc Targeting of Sst2-Expressing Tumors by Tetraamineoctreotide: First Results in CA20948 Cells and Rat Models. Anticancer Res. 2006;26;1A:363-366.
44. Gandomkar M., Najafi R., Babaei M.H., Shafiei M., Ebrahimi S.E.S. Synthesis, Development and Preclinical Comparison of Two New Peptide Based Freeze-Dried Kit Formulation 99mTc-EDDA-Tricine-HYNIC-TOC and 99mTc-EDDA-Tricine-HYNIC-TATE for Somatostatin Receptor Positive Tumor Scintigraphy. DARU. 2006;14;4:183-189.
45. Storch D., Béhé M., Walter M.A., Chen J., Powell P., Mikolajczak R., Mäcke H.R. Evaluation of [99mTc/EDDA/HYNIC0]Octreotide Derivatives Compared with [111In-DOTA0,Tyr3,Thr8]Octreotide and [111In-DTPA0]Octreotide: Does Tumor or Pancreas Uptake Correlate with the Rate of Internalization? J Nucl Med. 2005;46:1561-1569.
46. Dong C., Zhao H., Yang S., Shi J., Huang J., Cui L., Zhong L., Jin X., Li F., Liu Z., Jia B. 99mTc-Labeled Dimeric Octreotide Peptide: A Radiotracer with High Tumor Uptake for Single-Photon Emission Computed Tomography Imaging of Somatostatin Receptor Subtype 2-Positive Tumors. Mol Pharm. 2013;10:2925. https://pubs.acs.org/doi/10.1021/mp400040z.
47. De K., Banerjee I., Misra M. Radiolabeled New Somatostatin Analogs Conjugated to DOMA Chelator Used as Targeted Tumor Imaging Agent: Synthesis and Radiobiological Evaluation. Amino Acids. 2015;47:1135-1153. DOI 10.1007/s00726-015-1942-0.
48. Fani M., Mansi R., Nicolas G.P., Wild D. Radiolabeled Somatostatin Analogs – A Continuously Evolving Class of Radiopharmaceuticals. Cancers. 2022;14:1172. doi: 10.3390/cancers14051172.
49. Radford L., Gallazzi F., Watkinson L., Carmack T., Berendzen A., Lewis M.R., Jurisson S.S., Papagiannopoulou D., Hennkens H.M. Synthesis and Evaluation of a 99mTc Tricarbonyl-Labeled Somatostatin Receptor-Targeting Antagonist Peptide for Imaging of Neuroendocrine Tumors. Nucl Med Biol. 2017;47:4-9. doi: 10.1016/j.nucmedbio.2016.12.002.
50. Radford L.L., Papagiannopoulou D., Gallazzi F., Berendzen A., Watkinson L., Carmack T., Lewis M.R., Jurisson S.S., Hennkens H.M. Synthesis and Evaluation of Re/99mTc(I) Complexes Bearing a Somatostatin Receptor-Targeting Antagonist and Labeled Via a Novel [N,S,O] Clickable Bifunctional Chelating Agent. Bioorg Med Chem. 2019;27;3:492-501. doi: 10.1016/j.bmc.2018.12.028.
51. Gaonkar R.H., Wiesmann F., Pozo L.D., McDougall L., Zanger S., Mikolajczak R., Mansi R., Fani M. SPECT Imaging of SST2-Expressing Tumors with 99mTc-Based Somatostatin Receptor Antagonists: The Role of Tetraamine, HYNIC, and Spacers. Pharmaceuticals. 2021;14:300. doi: 10.3390/ph14040300.
52. Fani M., Weingaertner V., Peitl P.K., Mansi R., Gaonkar R., Garnuszek P., Mikolajczak R., Novak D., Simoncic U., Hubalewska-Dydejczyk A., Rangger C., Kaeopookum P., Decristoforo C. Selection of the First 99mTc-Labelled Somatostatin Receptor Subtype 2 Antagonist for Clinical Translation-Preclinical Assessment of Two Optimized Candidates. Pharmaceuticals (Basel). 2020;14;1:19. doi: 10.3390/ph14010019.
53. Novak D., Janota B., Hörmenn A.A., Sawicka A., Kroselj M., Hubalewska-Dydejczyk A., Fani M., Mikolajczak R., Kolenc P., Decristoforo C., Garnuszek P. Development of the 99mTc-Labelled SST2 Antagonist TECANT-1 for a First-in-Man Multicentre Clinical Study. Pharmaceutics. 2023;15;3:885. doi: 10.3390/pharmaceutics15030885.
54. Opalinska M., Ležaić L., Decristoforo C., Kolenc P., Mikolajczak R., Studen A., Simoncic U., Virgolini I., Trofimiuk-Muldner M., Garnuszek P., Rangger C., Fani M., Glowa B., Skorkiewicz K., Hubalewska-Dydejczyk A. Comparison of 99mTc Radiolabeled Somatostatin Antagonist with [68Ga]Ga-DOTA-TATE in a Patient with Advanced Neuroendocrine Tumor. Eur J Nucl Med Mol Imaging. 2023;50:4110-4111. doi: 10.1007/s00259-023-06335-9.
55. Hubalewska-Dydejczyk A., Ležaić L., Decristoforo C., Mikolajczak R., Virgolini I., Kolenc P., Studen A., Simoncic U., Opalinska M., Trofimiuk-Muldner M., Garnuszek P., di Santo G., 56. Novak D., Rangger C., Kroselj M., Skorkiewicz K., Fani M., Janota B., Glowa B., Sawicka A. How Close We are to Optimise the Assessment of SSTR Status in NEN with a Radiolabelled SSTR Antagonist-Final Results of the TECANT Clinical Trial: Novel 99mTc-labelled Somatostatin Antagonists in the Diagnostic Algorithm of Neuroendocrine Neoplasms. Endocrine Abstracts. 2024;99:OC7.3. doi: 10.1530/endoabs.99.OC7.3.
56. Abiraj K., Ursillo S., Tamma M.L., Rylova S.N., Waser B., Constable E.C., Fani M., Nicolas G.P., Reubi J.C., Maecke H.R. The Tetraamine Chelator Outperforms HYNIC in a New Technetium-99m-Labelled Somatostatin Receptor 2 Antagonist. EJNMMI Research. 2018;8:75. https://doi.org/10.1186/s13550-018-0428-y.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The research was carried out with the financial support of Ministry of Health of the Russian Federation within implementation of state assignment № 124030500022-1.
Contribution. S.A. Ivanov, A.D. Kaprin aided in the concept and plan of the study; V.K. Tishchenko, O.P. Vlasova provided collection and analysis of data; preparation of the manuscript – V.K. Tishchenko, O.P. Vlasova.
Article received: 20.10.2024. Accepted for publication: 25.11.2024.